Content deleted Content added
user keeps placeing his personal site, on wikis that it is not related too |
fix link in references |
||
(26 intermediate revisions by 16 users not shown) | |||
Line 1:
{{Short description|Mathematical algorithm}}
'''Pollard's rho algorithm for logarithms''' is an algorithm introduced by [[John Pollard (mathematician)|John Pollard]] in 1978 to solve the [[discrete logarithm]] problem, analogous to [[Pollard's rho algorithm]] to solve the [[integer factorization]] problem.
The goal is to compute <math>\gamma</math> such that <math>\alpha ^ \gamma = \beta</math>, where <math>\beta</math> belongs to a [[cyclic group]] <math>G</math> generated by <math>\alpha</math>. The algorithm computes
To find the needed <math>a</math>, <math>b</math>, <math>A</math>, and <math>B</math> the algorithm uses [[Floyd's cycle-finding algorithm]] to find a cycle in the sequence <math>x_i = \alpha^{a_i} \beta^{b_i}</math>, where the [[function (mathematics)|function]] <math>f: x_i \mapsto x_{i+1}</math> is assumed to be random-looking and thus is likely to enter into a loop
==Algorithm==
Let <math>G</math> be a [[cyclic group]] of order <math>
: f(x) = \begin{cases}
\beta x & x\in S_0\\
x^2 & x\in S_1\\
\alpha x & x\in S_2
\end{cases}
</math>
and define maps <math>g:G\times\mathbb{Z}\to\mathbb{Z}</math> and <math>h:G\times\mathbb{Z}\to\mathbb{Z}</math> by
:<math>\begin{align}
g(x,
\end{cases}
\\
h(x,
\end{cases}
\end{align}</math>
''b'': an element of ''G'' Initialise ''i''
''i'
''x<sub>i</sub>'' ← ''f''(''x''<sub>''i''-1</sub>), ▼
''a<sub>i</sub>'' ← ''g''(''x''<sub>''i''-1</sub>, ''a''<sub>''i''-1</sub>), ▼
''b<sub>i</sub>'' ← ''h''(''x''<sub>''i''-1</sub>, ''b''<sub>''i''-1</sub>)▼
'''if''' r = 0 '''return failure'''▼
▲ '''end loop'''
'''return''' ''r''<sup><span class="nowrap" style="padding-left:0.1em">−1</span></sup>(''a''<sub>2''i''</sub> − ''a<sub>i</sub>'') mod ''n''
==Example==
Consider, for example, the group generated by 2 modulo <math>N=1019</math> (the order of the group is <math>n=1018</math>, 2 generates the group of units modulo 1019). The algorithm is implemented by the following [[C++]] program:
<
if
</syntaxhighlight>
The results are as follows (edited):
Line 98 ⟶ 109:
51 1010 681 378 1010 301 416
That is <math>2^{681} 5^{378} = 1010 = 2^{301} 5^{416} \pmod{1019}</math> and so <math>(416-378)\gamma = 681-301 \pmod{1018}</math>, for which <math>\gamma_1=10</math> is a solution as expected. As <math>n=1018</math> is not [[prime number|prime]], there is another solution <math>\gamma_2=519</math>, for which <math>2^{519} = 1014 = -5\pmod{1019}</math> holds.
==Complexity==
The running time is approximately <math>\mathcal{O}(\sqrt{n})</math>. If used together with the [[Pohlig–Hellman algorithm]], the running time of the combined algorithm is <math>\mathcal{O}(\sqrt{p})</math>, where <math>p</math> is the largest prime [[divisor|factor]] of <math>n</math>.
==References==
{{Reflist}}
*{{cite journal |first=J. M. |last=Pollard |title=Monte Carlo methods for index computation (mod ''p'') |journal=[[Mathematics of Computation]] |volume=32 |year=1978 |issue=143 |pages=918–924 |doi= 10.2307/2006496 |jstor=2006496 }}
*{{cite book |
{{Number-theoretic algorithms}}
|