Multivariate gamma function: Difference between revisions

Content deleted Content added
inline citation
rm a sentence part that is not needed
 
(22 intermediate revisions by 9 users not shown)
Line 1:
{{Short description|Multivariate generalization of the gamma function}}
In [[mathematics]], the '''multivariate gamma function''' Γ<sub>''p''</sub> is a generalization of the [[gamma function]]. It is useful in [[multivariate statistics]], appearing in the [[probability density function]] of the [[Wishart distribution|Wishart]] and [[inverse Wishart distribution]]s, and the [[matrix variate beta distribution]].<ref>{{Cite journal|last=James|first=Alan T.|date=June 1964-06|title=Distributions of Matrix Variates and Latent Roots Derived from Normal Samples|url=http://projecteuclid.org/euclid.aoms/1177703550|journal=The Annals of Mathematical Statistics|language=en|volume=35|issue=2|pages=475–501|doi=10.1214/aoms/1177703550|issn=0003-4851|doi-access=free}}</ref>
 
It has two equivalent definitions. One is given as the following integral over the <math>p \times p</math> [[positive-definite matrix|positive-definite]] real matrices:
Line 6 ⟶ 7:
\Gamma_p(a)=
\int_{S>0} \exp\left(
-{\rm tr}(S)\right)\,
\left|S\right|^{a-(\frac{p+1)/}{2}}
dS,
</math>
(note thatwhere <math>\Gamma_1\left(a\right)|S|</math> reduces todenotes the ordinarydeterminant gammaof function)<math>S</math>. The other one, more useful to obtain a numerical result is:
 
:<math>
\Gamma_p(a)=
\pi^{p(p-1)/4}\prod_{j=1}^p
\Gamma\left[ (a+(1-j)/2\right]).
</math>
In both definitions, <math>a</math> is a complex number whose real part satisfies <math>\Re(a) > (p-1)/2</math>. Note that <math>\Gamma_1(a)</math> reduces to the ordinary gamma function. The second of the above definitions allows to directly obtain the recursive relationships for <math>p\ge 2</math>:
From this, we have the recursive relationships:
:<math>
\Gamma_p(a) = \pi^{(p-1)/2} \Gamma(a) \Gamma_{p-1}(a-\tfrac{1}{2}) = \pi^{(p-1)/2} \Gamma_{p-1}(a) \Gamma[(a+(1-p)/2] ).
</math>
 
Thus
 
* <math>\Gamma_1(a)=\Gamma(a)</math>
* <math>\Gamma_2(a)=\pi^{1/2}\Gamma(a)\Gamma(a-1/2)</math>
* <math>\Gamma_3(a)=\pi^{3/2}\Gamma(a)\Gamma(a-1/2)\Gamma(a-1)</math>
Line 30:
and so on.
 
This can also be extended to non-integer values of <math>p</math> with the expression:
 
This can also be extended to non-integer values of p with the expression:
 
<math>\Gamma_p(a)=\pi^{p(p-1)/4} \frac{G(a+\frac{1}2)G(a+1)}{G(a+\frac{1-p}2)G(a+1-\frac{p}2)}</math>
 
Where G is the [[Barnes G-function]], the [[indefinite product]] of the [[Gamma function]].
 
The function is derived by Anderson<ref>{{Cite book|last=Anderson|first=T W|title=An Introduction to Multivariate Statistical Analysis|publisher=John Wiley and Sons|year=1984|isbn=0-471-88987-3|___location=New York|pages=Ch. 7}}</ref> from first principles who also cites earlier work by [[John Wishart (statistician)|Wishart]], [[Prasanta Chandra Mahalanobis|Mahalanobis]] and others.
 
There also exists a version of the multivariate gamma function which instead of a single complex number takes a <math>p</math>-dimensional vector of complex numbers as its argument. It generalizes the above defined multivariate gamma function insofar as the latter is obtained by a particular choice of multivariate argument of the former.<ref>{{cite web|url=https://dlmf.nist.gov/35|title=Chapter 35 Functions of Matrix Argument|work=[[Digital Library of Mathematical Functions]]|author=[[Donald Richards (statistician)|D. St. P. Richards]]|date=n.d.|access-date=23 May 2022}}</ref>
 
== Derivatives ==
Line 62 ⟶ 65:
</math>
 
{{nomore footnotes|date=May 2012}}<br />
 
==References==
{{Reflist}}
* 1. {{cite journal
|title=Distributions of Matrix Variates and Latent Roots Derived from Normal Samples
|last=James |first=A.
Line 71 ⟶ 76:
|doi=10.1214/aoms/1177703550 |mr=181057 | zbl = 0121.36605
|doi-access=free }}
* 2. A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.
 
 
[[Category:Gamma and related functions]]