Hypergeometric function of a matrix argument: Difference between revisions

Content deleted Content added
Created page with ' In mathematics, the hypergeometric function of a matrix argument is a generalization of the classical hypergeometric series. It is the closed form expressi...'
 
The parameter \alpha: WP:SECTIONHEAD: For technical reasons, section headings should not contain <math> markup. (I don't know if this is the preferred way of fixing this. If not, feel free to improve this further!)
 
(20 intermediate revisions by 14 users not shown)
Line 1:
In [[mathematics]], the '''hypergeometric function of a matrix argument''' is a generalization of the classical [[hypergeometric series]]. It is a function defined by an infinite summation which can be used to evaluate certain multivariate integrals.
 
InHypergeometric [[mathematics]], the hypergeometric functionfunctions of a matrix argument ishave aapplications generalization of the classicalin [[hypergeometric series]]. It is the closed form expression of certain multivariate integrals, especially ones appearing in random matrix theory]]. For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argument.
 
==Definition==
 
==Definition of <math>_pF_q^{(\alpha)}(a_1,\ldots,a_p;b_1,\ldots,b_q;X)</math>==
 
Let <math>p\ge 0</math> and <math>q\ge 0</math> be integers, and let
Line 10:
and parameter <math>\alpha>0</math> is defined as
 
: <math>
<center>
<math>
_pF_q^{(\alpha )}(a_1,\ldots,a_p;
b_1,\ldots,b_q;X) =
Line 20 ⟶ 19:
C_\kappa^{(\alpha )}(X),
</math>
</center>
 
where <math>\kappa\vdash k</math> means <math>\kappa</math> is a [[partition (number theory)|partition]] of <math>k</math>, <math>(a_i)^{(\alpha )}_{\kappa}</math> is the [[Generalizedgeneralized Pochhammer symbol]], and
<math>C_\kappa^{(\alpha )}(X)</math> is the ``"C" normalization of the [[Jack function]].
 
==Two matrix arguments==
==References==
If <math>X</math> and <math>Y</math> are two <math>m\times m</math> complex symmetric matrices, then the hypergeometric function of two matrix arguments is defined as:
 
: <math>
* K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", ''J. Approx. Theory'', '''59''', no. 2, 224–246, 1989.
_pF_q^{(\alpha )}(a_1,\ldots,a_p;
b_1,\ldots,b_q;X,Y) =
\sum_{k=0}^\infty\sum_{\kappa\vdash k}
\frac{1}{k!}\cdot
\frac{(a_1)^{(\alpha )}_\kappa\cdots(a_p)_\kappa^{(\alpha )}}
{(b_1)_\kappa^{(\alpha )}\cdots(b_q)_\kappa^{(\alpha )}} \cdot
\frac{C_\kappa^{(\alpha )}(X)
C_\kappa^{(\alpha )}(Y)
}{C_\kappa^{(\alpha )}(I)},
</math>
 
where <math>I</math> is the identity matrix of size <math>m</math>.
* Koev, Plamen and Edelman, Alan, "The efficient evaluation of the hypergeometric function of a matrix argument",
''Mathematics of Computation'', '''75''', no. 254, 833-846, 2006.
 
==Not a typical function of a matrix argument==
* Muirhead, Robb, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.
 
Unlike other functions of matrix argument, such as the [[matrix exponential]], which are matrix-valued, the hypergeometric function of (one or two) matrix arguments is scalar-valued.
 
==The parameter ''α''==
In many publications the parameter <math>\alpha</math> is omitted. Also, in different publications different values of <math>\alpha</math> are being implicitly assumed. For example, in the theory of real random matrices (see, e.g., Muirhead, 1984), <math>\alpha=2</math> whereas in other settings (e.g., in the complex case—see Gross and Richards, 1989), <math>\alpha=1</math>. To make matters worse, in random matrix theory researchers tend to prefer a parameter called <math>\beta</math> instead of <math>\alpha</math> which is used in combinatorics.
 
The thing to remember is that
 
: <math>\alpha=\frac{2}{\beta}.</math>
 
Care should be exercised as to whether a particular text is using a parameter <math>\alpha</math> or <math>\beta</math> and which the particular value of that parameter is.
 
Typically, in settings involving real random matrices, <math>\alpha=2</math> and thus <math>\beta=1</math>. In settings involving complex random matrices, one has <math>\alpha=1</math> and <math>\beta=2</math>.
 
==References==
 
* K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", ''J. Approx. Theory'', '''59''', no. 2, 224–246, 1989.
* J. Kaneko, "Selberg Integrals and hypergeometric functions associated with Jack polynomials", ''SIAM Journal on Mathematical Analysis'', '''24''', no. 4, 1086-1110, 1993.
* Koev, Plamen Koev and Alan Edelman, Alan, "The efficient evaluation of the hypergeometric function of a matrix argument", ''Mathematics of Computation'', '''75''', no. 254, 833-846, 2006.
* Muirhead, Robb Muirhead, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.
 
==External links==
* [http://www-math.mit.edu/~plamen/software/mhgref.html Software for computing the hypergeometric function of a matrix argument] by Plamen Koev.
 
{{series (mathematics)}}
* [http://www-math.mit.edu/~plamen/software/mhgref.html Software for computing the hypergeometric function of a matrix argument]
[[Category:Hypergeometric functions]]