Hypergeometric function of a matrix argument: Difference between revisions

Content deleted Content added
No edit summary
The parameter \alpha: WP:SECTIONHEAD: For technical reasons, section headings should not contain <math> markup. (I don't know if this is the preferred way of fixing this. If not, feel free to improve this further!)
 
(18 intermediate revisions by 14 users not shown)
Line 1:
In [[mathematics]], the '''hypergeometric function of a matrix argument''' is a generalization of the classical [[hypergeometric series]]. It is thea closedfunction formdefined expressionby ofan certaininfinite multivariatesummation integrals,which especiallycan onesbe appearingused into randomevaluate matrixcertain theory.multivariate For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argumentintegrals.
 
Hypergeometric functions of a matrix argument have applications in [[random matrix theory]]. For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argument.
 
==Definition==
Line 9 ⟶ 10:
and parameter <math>\alpha>0</math> is defined as
 
: <math>
<center>
<math>
_pF_q^{(\alpha )}(a_1,\ldots,a_p;
b_1,\ldots,b_q;X) =
Line 19:
C_\kappa^{(\alpha )}(X),
</math>
</center>
 
where <math>\kappa\vdash k</math> means <math>\kappa</math> is a [[partition (number theory)|partition]] of <math>k</math>, <math>(a_i)^{(\alpha )}_{\kappa}</math> is the [[Generalizedgeneralized Pochhammer symbol]], and
<math>C_\kappa^{(\alpha )}(X)</math> is the ``"C" normalization of the [[Jack function]].
 
==Two matrix arguments==
If <math>X</math> and <math>Y</math> are two <math>m\times m</math> complex symmetric matrices, then the hypergeometric function of two matrix argumentarguments is defined as:
 
: <math>
<center>
<math>
_pF_q^{(\alpha )}(a_1,\ldots,a_p;
b_1,\ldots,b_q;X,Y) =
Line 39 ⟶ 37:
}{C_\kappa^{(\alpha )}(I)},
</math>
</center>
 
where <math>I</math> is the identity matrix of size <math>m</math>.
==Not your typical function of a matrix argument==
 
==Not youra typical function of a matrix argument==
Unlike other functions of matrix argument, such as the [[matrix exponential]], which are matrix-valued, the hypergeometric function of (one or two) matrix arguments is '''scalar-valued'''!
 
Unlike other functions of matrix argument, such as the [[matrix exponential]], which are matrix-valued, the hypergeometric function of (one or two) matrix arguments is '''scalar-valued'''! .
==The parameter <math>\alpha</math>==
In many publications the parameter <math>\alpha</math> is omitted yet in different publications different values of <math>\alpha</math> are being implicitly assumed. For example, in the theory of real random matrices (see, e.g., Muirhead, 1984) <math>\alpha=2</math> whereas in other settings (e.g., in the complex case--see Gross and Richards, 1989) <math>\alpha=1</math>. To make matters worse, in combinatorics researchers often use the parameter <math>\alpha</math> whereas in random matrix theory reserchers tend to prefer a parameter called <math>\beta<math>. In other disciplines, it is <math>\alpha/2</math> that has certain meaning. In either case the connection is simple:
 
==The parameter <math>\alpha</math>''α''==
:<math>\alpha=\frac{2}{\beta}</math>
In many publications the parameter <math>\alpha</math> is omitted. yetAlso, in different publications different values of <math>\alpha</math> are being implicitly assumed. For example, in the theory of real random matrices (see, e.g., Muirhead, 1984), <math>\alpha=2</math> whereas in other settings (e.g., in the complex case--seecase—see Gross and Richards, 1989), <math>\alpha=1</math>. To make matters worse, in combinatorics researchers often use the parameter <math>\alpha</math> whereas in random matrix theory reserchersresearchers tend to prefer a parameter called <math>\beta</math>. Ininstead other disciplines, it isof <math>\alpha/2</math> thatwhich hasis certainused meaningin combinatorics. In either case the connection is simple:
 
The thing to remember is that
and care should be exercised as to whether a particular text is using a parameter <math>\alpha</math> or <math>\beta</math> and which the particular value of that parameter is.
 
: <math>\alpha=\frac{2}{\beta}.</math>
Typically, in settings involving real random matrices, <math>\alpha=2</math> and thus <math>\beta=1</math>. In settings involving complex random matrices, one has <math>\alpha=1</math> and <math>\beta=2</math>.
 
and careCare should be exercised as to whether a particular text is using a parameter <math>\alpha</math> or <math>\beta</math> and which the particular value of that parameter is.
 
Typically, in settings involving real random matrices, <math>\alpha=2</math> and thus <math>\beta=1</math>. In settings involving complex random matrices, one has <math>\alpha=1</math> and <math>\beta=2</math>.
 
==References==
 
* K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", ''J. Approx. Theory'', '''59''', no. 2, 224–246, 1989.
* J. Kaneko, "Selberg Integrals and hypergeometric functions associated with Jack polynomials", ''SIAM Journal on Mathematical Analysis'', '''24''', no. 4, 1086-1110, 1993.
 
* Kaneko,Plamen J.Koev and Alan Edelman, "SelbergThe Integralsefficient andevaluation of the hypergeometric functionsfunction associatedof witha Jackmatrix polynomialsargument", ''SIAM Journal onMathematics Mathematicalof AnalysisComputation'', '''2475''', no. 4254, 1086833-1110846, 19932006.
* Muirhead, Robb Muirhead, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.
 
* Koev, Plamen and Edelman, Alan, "The efficient evaluation of the hypergeometric function of a matrix argument", ''Mathematics of Computation'', '''75''', no. 254, 833-846, 2006.
 
* Muirhead, Robb, ''Aspects of Multivariate Statistical Theory'', John Wiley & Sons, Inc., New York, 1984.
 
 
 
==External links==
* [http://www-math.mit.edu/~plamen/software/mhgref.html Software for computing the hypergeometric function of a matrix argument] by Plamen Koev.
 
{{series (mathematics)}}
* [http://www-math.mit.edu/~plamen/software/mhgref.html Software for computing the hypergeometric function of a matrix argument] by Plamen Koev.
[[Category:Hypergeometric functions]]