Content deleted Content added
packing measure |
draft |
||
(11 intermediate revisions by 3 users not shown) | |||
Line 1:
{{Userspace draft|date=March 2021}}
'''Fractal measure''' is any [[measure (mathematics)|measure]] which generalizes the notions of length, area, and [[volume]] to non-[[integer]] dimensions, especially in application towards [[fractal]]s. There is no unique fractal measure, in part although not entirely due to the lack of a unique definition of [[fractal dimension]]; the most common fractal measures include the [[hausdorff measure]] and the packing measure, based off of the [[hausdorff dimension]] and [[packing dimension]] respectively.<ref>http://www.diva-portal.org/smash/get/diva2:22333/FULLTEXT01</ref> Fractal measures are measures in the sense of [[measure theory]], and are usually defined to agree with the ''n''-dimensional [[Lebesgue measure]] when ''n'' is an integer.<ref>https://link.springer.com/chapter/10.1007/978-1-4757-2958-0_1</ref> Fractal measures find application in the study of fractal geometry, as well as in [[physics]] and [[biology]] through the study of [[fractal derivative]]s.<ref>{{cite journal |first=W. |last=Chen |title=Time–space fabric underlying anomalous diffusion |journal=Chaos, Solitons and Fractals |volume=28 |issue= 4|pages=923–929 |year=2006 |doi= 10.1016/j.chaos.2005.08.199|url=|arxiv=math-ph/0505023 |bibcode=2006CSF....28..923C |s2cid=18369880 }}</ref> Fractal measure can be used to define the fractal dimension or vice versa.▼
▲'''Fractal measure''' is any [[measure (mathematics)|measure]] which generalizes the notions of length, area, and [[volume]] to non-[[integer]] dimensions, especially in application towards [[fractal]]s. There is no unique fractal measure, in part although not entirely due to the lack of a unique definition of [[fractal dimension]]; the most common fractal measures include the [[
A Carathéodory construction is a constructive method of building fractal measures, used to create [[measure (mathematics)| measure]]s from similarly defined [[outer measure]]s.
==Carathéodory Construction==
Let ''τ'' : Σ → [0, +∞] be a set function defined on a class Σ of subsets of ''X'' containing the empty set ∅, such that ''τ''(∅) = 0. One can show that the set function ''μ'' defined by<ref name="Geometric Outer-Measures">http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.517.5903&rep=rep1&type=pdf</ref>
:<math>\mu (E) = \lim_{\delta \to 0} \mu_{\delta} (E),</math>
where
:<math>
is not only an outer measure, but in fact a [[metric outer measure]] as well. (Some authors prefer to take a [[supremum]] over ''δ'' > 0 rather than a [[Limit of a function|limit]] as ''δ'' → 0; the two give the same result, since ''μ''<sub>''δ''</sub>(''E'') increases as ''δ'' decreases.)
The function and ___domain of ''τ'' may determine the specific measure obtained. For instance, if we give
:<math>\tau(C) = \mathrm{diam} (C)^s,\,</math>
where ''s'' is a positive constant and where ''τ'' is defined on the [[power set]] of all subsets of ''X'' (i.e., <math>\Sigma = 2^X</math>), the associated measure ''μ'' is the ''s''-dimensional [[Hausdorff measure]]. More generally, one could use any so-called [[dimension function]]. If instead ''τ'' is defined only on [[ball (mathematics)| ball]]s of ''X'', the associated measure <math>S^s</math> is an ''s''-dimensional spherical measure (not to be confused with the usual [[spherical measure]]), the following inequality applies:
<math>H^s(E) \le S^s(E) \le 2H^s(E)</math>.<ref name="Geometric Outer-Measures"/> {{clarify|reason=Covering by balls gives a different result than covering by general shapes; how this works needs to be explained in detail.}}
==Hausdorff measure==
{{main|Hausdorff measure}}
The Hasudorff measure is the most-used fractal measure and provides a definition for [[Hausdorff dimension]], which is in turn one of the most frequently used definitions of fractal dimension. Intuitively, the Hausdorff measure
▲:<math>H^d_\delta(S)=\inf\left \{\sum_{i=1}^\infty (\operatorname{diam} U_i)^d: \bigcup_{i=1}^\infty U_i\supseteq S, \operatorname{diam} U_i<\delta\right \},</math>
When the ''d''-dimensional Hausdorff measure is an integer, <math>H^d(S)</math> is proportional to the [[Lebesgue measure]] for that dimension. Due to this, some definitions of Hausdorff measure include a scaling by the volume of the unit [[N-sphere|''d''-ball]], expressed using [[gamma function|Euler's gamma function]] as
Line 19 ⟶ 32:
{{further|Packing dimension}}
Just as the packing dimension is in some ways a dual to the Hausdorff dimension, the packing measure is a counterpart to the Hausdorff measure. The packing measure is defined informally as the measure of "packing" a set with open balls, and calculating the measure of those balls
Let (''X'', ''d'') be a metric space with a subset ''S'' ⊆ ''X'' and let ''s'' ≥ 0. We take a "pre-measure" of ''S'', defined to be
|