Content deleted Content added
Kaltenmeyer (talk | contribs) m →Notes: typo, replaced: definded → defined |
No edit summary |
||
(12 intermediate revisions by 7 users not shown) | |||
Line 1:
{{short description|Combinatorial optimization method for pseudo-Boolean functions}}
'''Quadratic pseudo-Boolean optimisation''' ('''QPBO''') is a [[combinatorial optimization]] method for minimizing quadratic [[pseudo-Boolean function]]s in the form
:<math> f(\mathbf{x}) = w_0 + \sum_{p \in V} w_p(x_p) + \sum_{(p, q) \in E} w_{pq}(x_p, x_q) </math>
in the [[binary data|binary variables]] <math>x_p \in \{0, 1\} \; \forall p \in V = \{1, \dots, n\}</math>, with <math>E \subseteq V \times V</math>. If <math>f</math> is [[
QPBO is a useful tool for inference on [[Markov random field]]s and [[conditional random field]]s, and has applications in [[computer vision]] problems such as [[image segmentation]] and [[stereo cameras|stereo matching]].<ref name="rother" />
Line 31:
The algorithm can be divided in three steps: graph construction, max-flow computation, and assignment of values to the variables.
When constructing the graph, the set of vertices <math>V</math> contains the source and sink nodes <math>s</math> and <math>t</math>, and a
* for each term <math>w_p(0)</math> the edges <math>p \rightarrow t</math> and <math>s \rightarrow p'</math>, with weight <math>\frac{1}{2} w_p(0)</math>;
* for each term <math>w_p(1)</math> the edges <math>s \rightarrow p</math> and <math>p' \rightarrow t</math>, with weight <math>\frac{1}{2} w_p(1)</math>;
Line 47:
== Higher order terms ==
==Notes==
<references>
<ref name="review">Kolmogorov and Rother (2007).</ref>
<ref name="fix">Fix et al. (2011).</ref>
Line 61 ⟶ 60:
==References==
* {{cite journal|first1=Alain|last1=Billionnet|first2=Brigitte|last2=Jaumard|author2-link= Brigitte Jaumard |title=A decomposition method for minimizing quadratic pseudo-boolean functions|journal= [[Operations Research Letters]] |volume=8|number=3| pages=161–163|year=1989|doi=10.1016/0167-6377(89)90043-6}}
* {{cite conference|first1=Alexander|last1=Fix|first2=Aritanan|last2=Gruber|first3=Endre|last3=Boros|first4=Ramin|last4=Zabih|title=A graph cut algorithm for higher-order Markov random fields|conference= [[International Conference on Computer Vision]] |year=2011|pages=1020–1027|url=https://www.cs.cornell.edu/~afix/Papers/ICCV11.pdf}}
* {{cite conference|first1=Hiroshi|last1=Ishikawa|title=Higher-Order Clique Reduction Without Auxiliary Variables|conference= [[Conference on Computer Vision and Pattern Recognition]]|year=2014|publisher=IEEE|pages=1362–1269|url=https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Ishikawa_Higher-Order_Clique_Reduction_2014_CVPR_paper.pdf}}
Line 69 ⟶ 67:
== Notes ==
<references group="note">
<ref name="normal form">The representation of a pseudo-Boolean function with coefficients <math>\mathbf{w} = (w_0, w_1, \dots, w_{nn})</math> is not unique, and if two coefficient vectors <math>\mathbf{w}</math> and <math>\mathbf{w}'</math> represent the same function then <math>\mathbf{w}'</math> is said to be a reparametrisation of <math>\mathbf{w}</math> and vice versa. In some constructions it is useful to ensure that the function has a specific form, called ''
# <math>\min \{ w_p^0, w_p^1 \} = 0</math> for each <math>p \in V</math>;
# <math>\min \{ w_{pq}^{0j}, w_{pq}^{1j} \} = 0</math> for each <math>(p, q) \in E</math> and for each <math>j \in \{0, 1\}</math>.
|