Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: s2cid. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox3 | via #UCB_webform_linked 610/953 |
Jtuckerfoltz (talk | contribs) m Correct typo can -> cannot |
||
(10 intermediate revisions by 9 users not shown) | |||
Line 9:
Formally, (unweighted) Maximum Coverage
: Instance: A number <math> k </math> and a collection of sets <math> S = \{S_1, S_2, \ldots, S_m\} </math>.
: Objective: Find a subset <math> S
The maximum coverage problem is [[NP-hard]], and cannot be approximated to within <math>1 - \frac{1}{e} + o(1) \approx 0.632</math> under standard assumptions.
This result essentially matches the approximation ratio achieved by the generic greedy algorithm used for [[
==ILP formulation==
Line 29:
== Greedy algorithm ==
The [[greedy algorithm]] for maximum coverage chooses sets according to one rule: at each stage, choose a set which contains the largest number of uncovered elements. It can be shown that this algorithm achieves an approximation ratio of <math>1 - \frac{1}{e}</math>.<ref>{{cite book | last=Hochbaum | first=Dorit S. |
== Known extensions ==
The inapproximability results apply to all extensions of the maximum coverage problem since they hold the maximum coverage problem as a special case.
The Maximum Coverage Problem can be applied to road traffic situations; one such example is selecting which bus routes in a public transportation network should be installed with pothole detectors to maximise coverage, when only a limited number of sensors is available. This problem is a known extension of the Maximum Coverage Problem and was first explored in literature by Junade Ali and Vladimir Dyo.<ref>{{cite book|last1=Ali|first1=Junade|last2=Dyo|first2=Vladimir|title=Proceedings of the 14th International Joint Conference on e-Business and Telecommunications |chapter=Coverage and Mobile Sensor Placement for Vehicles on Predetermined Routes: A Greedy Heuristic Approach
== Weighted version ==
Line 84:
== References ==
* {{Cite book | last=Vazirani | first=Vijay V. |
▲[[Category:Set families]]
[[Category:NP-complete problems]]
|