Flix (programming language): Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid. | You can use this bot yourself. Report bugs here. | Suggested by Ost316 | Category:Articles for deletion | via #UCB_Category 42/844
The Death of UFCS: https://github.com/flix/flix/issues/1500
 
(34 intermediate revisions by 16 users not shown)
Line 1:
{{about|the Flix programming language|other uses|Flix (disambiguation)}}
 
{{multiple issues|
<!-- Please do not remove or change this AfD message until the discussion has been closed. -->
{{excessive detail|date=December 2020}}
{{Article for deletion/dated|page=Flix (programming language)|timestamp=20201220175939|year=2020|month=December|day=20|substed=yes|help=off}}
{{more citations needed|date=December 2020}}
<!-- Once discussion is closed, please place on talk page: {{Old AfD multi|page=Flix (programming language)|date=20 December 2020|result='''keep'''}} -->
{{primary sources|date=December 2020}}
<!-- End of AfD message, feel free to edit beyond this point -->
}}
{{Infobox programming language
| name = Flix
Line 11 ⟶ 12:
| typing = [[Hindley-Milner|inferred]], [[Static typing|static]], [[Strong and weak typing|strong]], [[structural typing|structural]]
| platform = [[Java virtual machine|JVM]]
| license = [[Apache License 2.0]].<ref name="license-github">{{cite web |url=https://github.com/flix/flix/blob/master/LICENSE.md|title=Apache License 2.0|date=27 July 2022 |via=[[GitHub]]}}</ref>
| website = {{URL|https://flix.dev/}}
| influenced_by = [[F Sharp (programming language)|F#]], [[Go (programming language)|Go]], [[Haskell (programming language)|Haskell]], [[OCaml]], [[Scala (programming language)|Scala]]
| file_ext = {{Mono|.flix}}
}}
'''Flix''' is a [[functional programming|functional]], [[imperative programming|imperative]], and [[logic programming|logic]] [[programming language]] developed at [[Aarhus University]], with funding from the [[Danish Council for Independent Research|Independent Research Fund Denmark]],<ref>{{cite web |title=Forskningsprojekter |url=https://dff.dk/forskningsprojekter?SearchableText=functional+and+declarative+logic+programming&period%3Alist=all&instrument%3Alist=all&filed_method%3Alist=all |website=Danmarks Frie Forskningsfond |language=da}}</ref> and by a community of [[open source]] contributors.<ref>{{cite web |title=Flix Authors |url=https://github.com/flix/flix/blob/master/AUTHORS.md |website=GitHub |date=27 July 2022 |language=en}}</ref> The Flix language supports [[algebraic data types]], [[pattern matching]], [[parametric polymorphism]], [[currying]], [[higher-order functionsfunction]]s, [[extensible records]],<ref>{{cite journal |last1=Leijen |first1=Daan |title=Extensible records with scoped labels |journal=Trends in Functional Programming}}</ref> [[Communicating sequential processes|channel and process-based concurrency]], and [[tail call elimination]]. Two notable features of Flix are its type and effect system<ref name="oopsla2020a">{{cite journal |last1=Madsen |first1=Magnus |last2=van de Pol |first2=Jaco |title=Polymorphic Types and Effects with Boolean Unification |journal=Proceedings of the ACM on Programming Languages |date=13 November 2020 |volume=4 |issue=OOPSLA |pages=1–29 |doi=10.1145/3428222|s2cid=227044242 }}</ref><ref>{{cite web |title=Polymorphic Types and Effects with Boolean Unification doi- OOPSLA Talk - YouTube |urlaccess=https://www.youtube.com/watch?v=iTZqr3Pu7YEfree |website=www.youtube.com}}</ref> and its support for first-class Datalog constraints.<ref name="oopsla2020b">{{cite journal |last1=Madsen |first1=Magnus |last2=Lhoták |first2=Ondřej |title=Fixpoints for the Masses: Programming with First-class Datalog Constraints |journal=Proceedings of the ACM on Programming Languages |date=13 November 2020 |volume=4 |issue=OOPSLA |pages=125:1–125:28 |doi=10.1145/3428193|s2cid=227107960 }}</ref><ref>{{cite web |title=Fixpoints for the Masses: Programming with Firstdoi-Class Datalog Constraints - OOPSLA Talk - YouTube |urlaccess=https://www.youtube.com/watch?v=ikVZrivln8cfree |website=www.youtube.com}}</ref>
 
The Flix type and effect system supports [[Hindley–Milner type system|Hindley-Milner]]-style [[type inference]]. The system separates pure and impure code: if an expression is typed as pure then it cannot produce an effect at run-time. Higher-order functions can enforce that they are given pure (or impure) function arguments. The type and effect system supports [[effect polymorphism]]<ref>{{cite journalbook |last1=Lucassen |first1=J. M. |last2=Gifford |first2=D. K. |title=Polymorphic effect systems |journal=Proceedings of the 15th ACM SIGPLAN-SIGACT Symposiumsymposium on Principles of Programmingprogramming Languageslanguages - POPL '88 |chapter=Polymorphic effect systems |date=1988 |pages=47–57 |doi=10.1145/73560.73564|isbn=0897912527 |s2cid=13015611 |doi-access=free }}</ref><ref>{{cite journal |last1=Leijen |first1=Daan |title=Koka: Programming with Row Polymorphic Effect Types |journal=Electronic Proceedings in Theoretical Computer Science |date=5 June 2014 |volume=153 |pages=100–126 |doi=10.4204/EPTCS.153.8|arxiv=1406.2061 |s2cid=14902937 }}</ref> which means that the effect of a higher-order function may depend on the effect(s) of its argument(s).
 
Flix supports [[Datalog]] programs as [[First-class citizen|first-class]] values. A Datalog program value, i.e. a collection of Datalog facts and rules, can be passed to and returned from functions, stored in data structures, and composed with other Datalog program values. The [[Minimal model program|minimal model]]{{dn|date=December 2020}} of a Datalog program value can be computed and is itself a Datalog program value. In this way, Flix can be viewed as a [[metaprogramming|meta programming]] language for Datalog. Flix supports [[Stratification (mathematics)#In mathematical logic|stratified negation]] and the Flix compiler ensures stratification at compile-time.<ref name="Programming Flix - Fixpoints">{{cite web |title=Programming Flix - Fixpoints |url=https://doc.flix.dev/fixpoints/ |website=flix.dev}}</ref> Flix also supports an enriched form of Datalog constraints where predicates are given [[Lattice (order)|lattice]] semantics.<ref>{{cite journal |last1=Madsen |first1=Magnus |last2=Yee |first2=Ming-Ho |last3=Lhoták |first3=Ondřej |title=From Datalog to flix: a declarative language for fixed points on lattices |journal=ACM SIGPLAN Notices |date=August 2016 |volume=51 |issue=6 |pages=194–208 |doi=10.1145/2980983.2908096}}</ref><ref>{{cite journalbook |last1=Madsen |first1=Magnus |last2=Lhoták |first2=Ondřej |title=Safe and sound program analysis with Flix |journal=Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis -|chapter=Safe ISSTAand 2018sound program analysis with Flix |date=2018 |pages=38–48 |doi=10.1145/3213846.3213847|isbn=9781450356992 |s2cid=49427988 }}</ref><ref>{{cite journal |last1=Keidel |first1=Sven |last2=Erdweg |first2=Sebastian |title=Sound and reusable components for abstract interpretation |journal=Proceedings of the ACM on Programming Languages |date=10 October 2019 |volume=3 |issue=OOPSLA |pages=1–28 |doi=10.1145/3360602|s2cid=203631644 |doi-access=free }}</ref><ref>{{cite book |last1=Gong |first1=Qing |title=Extending Parallel Datalog with Lattice |publisher=Pennsylvania State University}}</ref>
 
== Overview ==
 
Flix is a [[programming language]] in the [[Standard ML|ML]]-family of languages. Its type and effect system is based on [[Hindley–Milner type system|Hindley-Milner]] with several extensions, including [[row polymorphism]] and [[Unification (computer science)#E-unification|Boolean unification]]. The syntax of Flix is inspired by [[Scala (programming language)|Scala]] and uses short [[Reserved word|keywords]] and [[curly braces]]. Flix supports [[Uniform Function Call Syntax|uniform function call syntax]] which allows a function call <code>f(x, y, z)</code> to be written as <code>x.f(y, z)</code>. The concurrency model of Flix is inspired by [[Go (programming language)|Go]] and based on [[Communicating sequential processes|channels and processes]]. A process is a light-weight thread that does not share (mutable) memory with another process. Processes communicate over channels which are bounded or unbounded queues of immutable messages.
 
While many programming languages support a mixture of functional and imperative programming, the Flix type and effect system tracks the purity of every expression making it possible to write parts of a Flix program in a [[Purely functional programming|purely functional style]] with purity enforced by the effect system.
 
Flix programs compilescompile to [[JVM bytecode]] and are executable on the [[Java Virtual Machine]] (JVM).<ref>{{cite book |last1=Yee |first1=Ming-Ho |title=Implementing a Functional Language for Flix |date=2016-09-15 |publisher=University of Waterloo}}</ref>
The Flix compiler performs [[whole program compilation]], eliminates polymorphism via [[monomorphization]],<ref>{{cite web |title=Monomorphise |url=http://mlton.org/Monomorphise |website=mlton.org}}</ref> and uses [[tree shaking]] to remove [[unreachable code]].
Monomorphization avoids [[Value type and reference type|boxing]] of primitive values at the cost of longer compilation times and larger executable binaries. Flix has some support for interoperability with programs written in [[Java programming language|Java]].<ref>{{cite web |title=Programming Flix - Interoperability |url=https://doc.flix.dev/interoperability/ |website=flix.dev}}</ref>
 
Flix supports [[tail call elimination]] which ensures that function calls in tail position never consume stack space and hence cannot cause the call stack to overflow.<ref>{{cite journalbook |last1=Madsen |first1=Magnus |last2=Zarifi |first2=Ramin |last3=Lhoták |first3=Ondřej |title=Proceedings of the 27th International Conference on Compiler Construction |chapter=Tail call elimination and data representation for functional languages on the Java virtual machine |journal=Proceedings of the 27th International Conference on Compiler Construction - CC 2018 |date=2018 |pages=139–150 |doi=10.1145/3178372.3179499|isbn=9781450356442 |s2cid=3432962 }}</ref> Since the [[Java bytecode instruction listings|JVM instruction set]] lacks explicit support for tail calls, such calls are emulated using a form of reusable stack frames.<ref>{{cite journalbook |last1=Tauber |first1=Tomáš |last2=Bi |first2=Xuan |last3=Shi |first3=Zhiyuan |last4=Zhang |first4=Weixin |last5=Li |first5=Huang |last6=Zhang |first6=Zhenrui |last7=Oliveira |first7=Bruno C. D. S. |titlechapter=Memory-Efficient Tail Calls in the JVM with Imperative Functional Objects |journaltitle=Programming Languages and Systems |series=Lecture Notes in Computer Science |date=2015 |volume=9458 |pages=11–28 |doi=10.1007/978-3-319-26529-2_2|isbn=978-3-319-26528-5 }}</ref> Support for tail call elimination is important since all iteration in Flix is expressed through [[recursion]].
 
The Flix compiler disallows most forms of unused or redundant code, including: unused local variables, unused functions, unused formal parameters, unused type parameters, and unused type declarations, such unused constructs are reported as compiler errors.<ref>{{cite web |title=Redundancies as Compile-Time Errors |url=https://flix.dev/blog/redundancies-as-compile-time-errors/ |website=flix.dev}}</ref> [[Variable shadowing]] is also disallowed. The stated rationale is that unused or redundant code is often correlated with erroneous code<ref>{{cite journal |last1=Engler |first1=D. |title=Using redundancies to find errors |journal=IEEE Transactions on Software Engineering |date=October 2003 |volume=29 |issue=10 |pages=915–928 |doi=10.1109/TSE.2003.1237172}}</ref>
Line 42 ⟶ 43:
== Examples ==
 
=== Hello Worldworld ===
 
The following program prints "[["Hello, World!" program|Hello World!]]" when compiled and executed:
 
<syntaxhighlight lang="scalaflx">
def main(): Unit &\ ImpureIO =
Console.printLineprintln("Hello World!")
</syntaxhighlight>
 
The type and effect signature of the <code>main</code> function specifies that it has no parameters, returns a value of type <code>Unit</code>, and that the function has the IO effect, i.e. is impure. The <code>main</code> function is impure because it invokes <code>printLine</code> which is impure.
 
=== Algebraic data types and pattern matching ===
Line 57 ⟶ 58:
The following program fragment declares an [[algebraic data type]] (ADT) named <code>Shape</code>:
 
<syntaxhighlight lang="scalaflx">
enum Shape {
case Circle(IntInt32), // has circle radius
case Square(IntInt32), // has side length
case Rectangle(IntInt32, IntInt32) // has height and width
}
</syntaxhighlight>
Line 69 ⟶ 70:
The following program fragment uses [[pattern matching]] to destruct a <code>Shape</code> value:
 
<syntaxhighlight lang="scalaflx">
def area(s: Shape): IntInt32 = match s {
case Circle(r) => 3 * (r * r)
case Square(w) => w * w
Line 81 ⟶ 82:
The following program fragment defines a [[higher-order function]] named <code>twice</code> that when given a function <code>f</code> from <code>Int</code> to <code>Int</code> returns a function that applies <code>f</code> to its input two times:
 
<syntaxhighlight lang="scalaflx">
def twice(f: IntInt32 -> IntInt32): IntInt32 -> IntInt32 = x -> f(f(x))
</syntaxhighlight>
 
We can use the function <code>twice</code> as follows:
 
<syntaxhighlight lang="scalaflx">
twice(x -> x + 1)(0)
</syntaxhighlight>
 
Here the call to <code>twice(x -> x + 1)</code> returns a function that will increment its argument two times. Consequently,Thus the result of the entirewhole expression is <code>0 + 1 + 1 = 2</code>.
 
=== Parametric polymorphism ===
Line 97 ⟶ 98:
The following program fragment illustrates a [[Parametric polymorphism|polymorphic function]] that maps a function <code>f: a -> b</code> over a list of elements of type <code>a</code> returning a list of elements of type <code>b</code>:
 
<syntaxhighlight lang="scalaflx">
def map(f: a -> b, l: List[a]): List[b] = match l {
case Nil => Nil
Line 112 ⟶ 113:
The following program fragment shows how to construct a [[Record (computer science)|record]] with two fields <code>x</code> and <code>y</code>:
 
<syntaxhighlight lang="scalaflx">
def point2d(): {x: IntInt32, y: IntInt32} = {x = 1, y = 2}
</syntaxhighlight>
 
Flix uses [[row polymorphism]] to type records. The <code>sum</code> function below takes a record that has <code>x</code> and <code>y</code> fields (and possibly other fields) and returns the sum of the two fields:
 
<syntaxhighlight lang="scalaflx">
def sum(r: {x: IntInt32, y: IntInt32 | rest}): Int = r.x + r.y
</syntaxhighlight>
 
The following are all valid calls to the <code>sum</code> function:
 
<syntaxhighlight lang="scalaflx">
sum({x = 1, y = 2})
sum({y = 2, x = 1})
Line 134 ⟶ 135:
=== Polymorphic effects ===
 
The Flix type and effect system separates pure and impure expressions.<ref name="oopsla2020a"/><ref>{{cite web |title=Programming Flix - Effects |url=https://doc.flix.dev/effects/ |website=flix.dev}}</ref><ref>{{cite web|title=Rust Internals - Flix Polymorphic Effects|date=15 November 2020 |url=https://internals.rust-lang.org/t/flix-polymorphic-effects/13395}}</ref> A pure expression is guaranteed to be [[Referential transparency|referentially transparent]]. A pure function always returns the same value when given the same argument(s) and cannot have any (observable) side-effects.
 
For example, the following expression is of type <code>IntInt32</code> and ishas the empty effect set <code>Pure{}</code>, i.e. it is pure:
 
<syntaxhighlight lang="scalaflx">
1 + 2 : IntInt32 &\ Pure{}
</syntaxhighlight>
 
whereas the following expression ishas the <code>ImpureIO</code> effect, i.e. is impure:
 
<syntaxhighlight lang="scalaflx">
Console.printLineprintln("Hello World") : Unit &\ ImpureIO
</syntaxhighlight>
 
Line 152 ⟶ 153:
For example, the definition of <code>Set.exists</code> requires that its function argument <code>f</code> is pure:
 
<syntaxhighlight lang="scalaflx">
// The syntax a -> Bool is short-hand for a -> Bool &\ Pure{}
def exists(f: a -> Bool, xs: Set[a]): Bool = ...
</syntaxhighlight>
Line 163 ⟶ 164:
For example, the definition of <code>List.foreach</code> requires that its function argument <code>f</code> is impure:
 
<syntaxhighlight lang="scalaflx">
//def The syntaxforeach(f: a ~-> Unit is\ short-handIO, forxs: List[a ->]): Unit &\ ImpureIO
def foreach(f: a ~> Unit, xs: List[a]): Unit & Impure
</syntaxhighlight>
 
The requirement that <code>f</code> must be impure ensures that the code makes sense: It would be meaningless to call <code>List.foreach</code> with a pure function since it always returns <code>Unit</code>.
 
The type and effect is [[sound]], but not [[complete]]. That is, if a function is pure then it ''cannot'' cause an effect, whereas if a function is impure then it ''may'', but not necessarily, cause an effect. For example, the following expression is impure even though it cannot produce an effect at run-time:
 
<syntaxhighlight lang="scalaflx">
if (1 == 2) Console.printLineprintln("Hello World!") else ()
</syntaxhighlight>
 
Line 180:
For example, the standard library definition of <code>List.map</code> is effect polymorphic:<ref>{{cite web |title=The Flix API - List|url=https://api.flix.dev/List |website=api.flix.dev}}</ref>
 
<syntaxhighlight lang="scalaflx">
def map(f: a -> b &\ e, xs: List[a]): List[b] &\ e
</syntaxhighlight>
 
Line 190:
For example, the standard library definition of forward [[Function composition (computer science)|function composition]] <code>&gt;&gt;</code> is pure if both its function arguments are pure:<ref>{{cite web |title=The Flix API - Prelude |url=https://api.flix.dev/ |website=api.flix.dev}}</ref>
 
<syntaxhighlight lang="scalaflx">
def >>(f: a -> b &\ e1, g: b -> c &\ e2): a -> c &\ (e1 and+ e2) = x -> g(f(x))
</syntaxhighlight>
 
The type and effect signature can be understood as follows: The <code>&gt;&gt;</code> function takes two function arguments: <code>f</code> with effect <code>e1</code> and <code>g</code> with effect <code>e2</code>. The effect of <code>&gt;&gt;</code> is effect polymorphic in the [[Logical conjunction|conjunction]] of <code>e1</code> and <code>e2</code>. If both are pure (their effect is true) then the overall expression is pure (true). Otherwise it is impure.
 
The type and effect system allows arbitrary booleanset expressions to control the purity of function arguments.
 
For example, it is possible to express a higher-order function <code>h</code> that accepts two function arguments <code>f</code> and <code>g</code> where the effects of which<code>f</code> atare mostdisjoint onefrom isthose of impure<code>g</code>:
 
<syntaxhighlight lang="scalaflx">
def h(f: a -> b &\ e1, g: b -> c &\ (note2 e1- or e2)e1): Unit
</syntaxhighlight>
 
If <code>h</code> is called with a function argument <code>f</code> which is impure (false) thenhas the second argument must be pure (true). Conversely, if <code>fIO</code> is pure (true)effect then <code>g</code> maycannot behave pure (true) or impure (false). It is a compile-time error to callthe <code>hIO</code> with two impure functionseffect.
 
The type and effect system can be used to ensure that statement expressions are useful, i.e. that if an expression or function is evaluated and its result is discarded then it must have a side-effect. For example, compiling the program fragment below:
 
<syntaxhighlight lang="scalaflx">
def main(): Unit &\ ImpureIO =
List.map(x -> 2 * x, 1 :: 2 :: Nil);
Console.printLineprintln("Hello World")
</syntaxhighlight>
 
causes a compiler error:
 
<syntaxhighlight lang="textoutput">
-- Redundancy Error --------------------------------------------------
 
Line 230:
=== First-class datalog constraints ===
 
Flix supports [[Datalog]] programs as first-class values.<ref name="oopsla2020b"/><ref name="Programming Flix - Fixpoints"/><ref>{{cite journal |last1=Arntzenius |first1=Michael |last2=Krishnaswami |first2=Neel |title=Seminaïve evaluation for a higher-order functional language |journal=Proceedings of the ACM on Programming Languages |date=January 2020 |volume=4 |issue=POPL |pages=1–28 |doi=10.1145/3371090|s2cid=208305062 |doi-access=free }}</ref> A Datalog program is a logic program that consists of a collection of unordered [[fact]]s and [[Horn clause|rules]]. Together, the facts and rules imply a [[Minimal model program|minimal model]], a unique solution to any Datalog program. In Flix, Datalog program values can be passed to and returned from functions, stored in data structures, composed with other Datalog program values, and solved. The solution to a Datalog program (the minimal model) is itself a Datalog program. Thus, it is possible to construct pipelines of Datalog programs where the solution, i.e. "output", of one Datalog program becomes the "input" to another Datalog program.
 
The following edge facts define a graph:
 
<syntaxhighlight lang="scalaflx">
Edge(1, 2). Edge(2, 3). Edge(3, 4).
</syntaxhighlight>
Line 240:
The following Datalog rules compute the [[transitive closure]] of the edge relation:
 
<syntaxhighlight lang="scalaprolog">
Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).
Line 247:
The minimal model of the facts and rules is:
 
<syntaxhighlight lang="scalaflx">
Edge(1, 2). Edge(2, 3). Edge(3, 4).
Path(1, 2). Path(2, 3). Path(3, 4).
Line 255:
In Flix, Datalog programs are values. The above program can be [[Domain-specific language|embedded]] in Flix as follows:
 
<syntaxhighlight lang="scalaflx">
def main(): #{Edge(IntInt32, IntInt32), Path(IntInt32, IntInt32)} =
let f = #{
Edge(1, 2). Edge(2, 3). Edge(3, 4).
Line 271:
Since Datalog programs are first-class values, we can refactor the above program into several functions. For example:
 
<syntaxhighlight lang="scalaflx">
def edges(): #{Edge(IntInt32, IntInt32), Path(IntInt32, IntInt32)} = #{
Edge(1, 2). Edge(2, 3). Edge(3, 4).
}
 
def closure(): #{Edge(IntInt32, IntInt32), Path(IntInt32, IntInt32)} = #{
Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).
}
 
def mainrun(): #{Edge(IntInt32, IntInt32), Path(IntInt32, IntInt32)} = solve edges() <+> closure()
</syntaxhighlight>
 
The un-directed closure of the graph can be computed by adding the rule:
 
<syntaxhighlight lang="scalaprolog">
Path(x, y) :- Path(y, x).
</syntaxhighlight>
Line 292:
We can modify the <code>closure</code> function to take a Boolean argument that determines whether we want to compute the directed or un-directed closure:
 
<syntaxhighlight lang="scalaflx">
def closure(directed: Bool): #{Edge(IntInt32, IntInt32), Path(IntInt32, IntInt32)} =
let p1 = #{
Path(x, y) :- Edge(x, y).
Line 310:
For example, the following program fragment does not type check:
 
<syntaxhighlight lang="scalaflx">
let p1 = Edge(123, 456).;
let p2 = Edge("a", "b").;
Line 316:
</syntaxhighlight>
 
because in <code>p1</code> the type of the <code>Edge</code> predicate is <code>Edge(IntInt32, IntInt32)</code> whereas in <code>p2</code> it has type <code>Edge(String, String)</code>. The Flix compiler rejects such programs as ill-typed.
 
==== Stratified negation ====
Line 324:
For example, the following Flix program contains an expression that cannot be stratified:
 
<syntaxhighlight lang="scalaflx">
def main(): #{Male(String), Husband(String), Bachelor(String)} =
let p1 = Husband(x) :- Male(x), not Bachelor(x).;
Line 337:
The stratification is sound, but conservative. For example, the following program is [[Type system#Static type checking|unfairly rejected]]:
 
<syntaxhighlight lang="scalaflx">
def main(): #{A(IntInt32), B(IntInt32)} =
if (true)
A(x) :- A(x), not B(x).
Line 363:
 
== References ==
 
<!-- Inline citations added to your article will automatically display here. See en.wikipedia.org/wiki/WP:REFB for instructions on how to add citations. -->
{{reflist}}
Line 368 ⟶ 369:
== External links ==
 
* [https://flix.dev/ The Official Websitewebsite]
* [https://docgithub.com/flix.dev/flix TheFlix Programmingimplementation Flixsource Bookcode], hosted at [[GitHub]].
* [https://play.flix.dev/ The Flix Online Playground]
* [https://github.com/flix/flix The Flix Project on GitHub]
* [https://api.flix.dev/ The Flix Standard Library]
 
[[Category:Procedural programming languages]]