Conditional probability distribution: Difference between revisions

Content deleted Content added
Line 92:
:<math>\operatorname{P}(A\mid\mathcal{B}) = \operatorname{E}(\mathbf{1}_A\mid\mathcal{B}) \; </math>
 
In other words, <math>\scriptstyle \operatorname{P}(A\mid\mathcal{B}) </math> is a <math>\scriptstyle \mathcal B</math>-measurable function satisfying
 
:<math>\int_B \operatorname{P}(A\mid\mathcal{B}) (\omega) \, \mathrm{d} \operatorname{P}(\omega) = \operatorname{P} (A \cap B) \qquad \text{for all} \quad A \in \mathcal{A}, B \in \mathcal{B}. </math>