Linear-fractional programming: Difference between revisions

Content deleted Content added
Tags: Reverted Mobile edit Mobile web edit Advanced mobile edit
Tags: Reverted Mobile edit Mobile web edit Advanced mobile edit
Line 17:
Under the assumption that the feasible region is non-empty and bounded, the Charnes-Cooper transformation<ref name="CC"/>
 
:<math>\mathbf{y} = \frac{1}{\mathbf{d}^T\top \mathbf{x} + \beta} \cdot \mathbf{x}\;;\;\; t = \frac{1}{\mathbf{d}^T\top \mathbf{x} + \beta}</math>
 
translates the linear-fractional program above to the equivalent linear program:
Line 23:
:<math>
\begin{align}
\text{maximize} \quad & \mathbf{c}^T\top \mathbf{y} + \alpha t \\
\text{subject to} \quad & A\mathbf{y} \leq \mathbf{b} t \\
& \mathbf{d}^T\top \mathbf{y} + \beta t = 1 \\
& t \geq 0.
\end{align}
</math>
 
Then the solution for <math>\mathbf{{math|'''y'''}}</math> and <math>{{mvar|t </math>}} yields the solution of the original problem as
 
:<math>\mathbf{x}=\frac{1}{t}\mathbf{y}.</math>