Content deleted Content added
→top: Refer to MOS:MATH#PUNC |
→Representations: Fixed height of ellipsis Tags: Reverted Visual edit |
||
Line 5:
==Representations==
Any pseudo-Boolean function can be written uniquely as a [[multi-linear]] polynomial:<ref>{{Cite journal|title = On the determination of the minima of pseudo-Boolean functions|last1 = Hammer|first1 = P.L.|date = 1963|journal = Studii și cercetări matematice|last2 = Rosenberg|first2 = I.|last3 = Rudeanu|first3 = S.|issue = 14|pages = 359–364|language = ro|issn = 0039-4068}}</ref><ref>{{Cite book|title = Boolean Methods in Operations Research and Related Areas|last1 = Hammer|first1 = Peter L.|publisher = Springer|year = 1968|isbn = 978-3-642-85825-3|last2 = Rudeanu|first2 = Sergiu}}</ref>
:<math>f(\boldsymbol{x}) = a + \sum_i a_ix_i + \sum_{i<j}a_{ij}x_ix_j + \sum_{i<j<k}a_{ijk}x_ix_jx_k + \
The '''degree''' of the pseudo-Boolean function is simply the degree of the [[polynomial]] in this representation.
In many settings (e.g., in [[Analysis of Boolean functions|Fourier analysis of pseudo-Boolean functions]]), a pseudo-Boolean function is viewed as a function <math>f</math> that maps <math>\{-1,1\}^n</math> to <math>\mathbb{R}</math>. Again in this case we can uniquely write <math>f</math> as a multi-linear polynomial:
<math display="inline"> f(x)= \sum_{I\subseteq [n]}\hat{f}(I)\prod_{i\in I}x_i, </math> where <math> \hat{f}(I) </math> are Fourier coefficients of <math>f</math> and <math>[n]=\{1,
==Optimization==
|