Content deleted Content added
{{cite...}}: from discouraged 'year' param to 'date' | +__NOTOC__ | {reflist|refs}} | from parenthetical referencing (deprecated) to short footnote | -{{Use parenthetical referencing}} | +{{Use shortened footnotes}} |
|||
Line 1:
{{about|the mathematical concept of Graph Algebras|"Graph Algebra" as used in the social sciences|Graph algebra (social sciences)}}
{{Use shortened footnotes|date=May 2021}}
__NOTOC__
In [[mathematics]], especially in the fields of [[universal algebra]] and [[graph theory]], a '''graph algebra''' is a way of giving a [[directed graph]] an [[algebraic structure]]. It was introduced
== Definition ==
Line 11 ⟶ 10:
== Applications ==
This notion has made it possible to use the methods of graph theory in universal algebra and several other directions of discrete mathematics and computer science. Graph algebras have been used, for example, in constructions concerning dualities
tree languages and [[tree automata]]
== See also ==
Line 21 ⟶ 20:
==Works cited==
{{refbegin|35em}}
{{reflist|refs=
<ref name=McNultyShallon1983>{{Cite book |last1=McNulty |first1=George F. |last2=Shallon |first2=Caroline R. |year=1983 |chapter=Inherently nonfinitely based finite algebras |editor-last1=Freese |editor-first1=Ralph S. |editor-last2=Garcia |editor-first2=Octavio C. |title=Universal algebra and lattice theory (Puebla, 1982) |volume=1004 |series=Lecture Notes in Math. |___location=Berlin, New York City |publisher=[[Springer-Verlag]] |at=[https://archive.org/details/universalalgebra0000unse/page/206 pp. 206–231] |isbn=9783540123293 |doi=10.1007/BFb0063439 |hdl=10338.dmlcz/102157 |mr=716184 |hdl-access=free |url=https://archive.org/details/universalalgebra0000unse |via=[[Internet Archive]]}}</ref>
<ref name=DaveyETAL2000>{{Cite journal |last1=Davey | first1=Brian A. |last2=Idziak |first2=Pawel M. |last3=Lampe |first3=William A. |last4=McNulty |first4=George F. |date=2000 |title=Dualizability and graph algebras |journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] |volume=214 |issue=1 |pp=145–172 |issn=0012-365X |doi=10.1016/S0012-365X(99)00225-3 |mr=1743633 }}</ref>
<ref name=Pöschel1989>{{Cite journal |last=Pöschel |first=R. |date=1989 |title=The equational logic for graph algebras |journal=Z. Math. Logik Grundlag. Math. |volume=35 |issue=3 |pp=273–282 |doi=10.1002/malq.19890350311 |mr=1000970}}</ref>
<ref name=Delić2001>{{Cite journal |last=Delić |first=Dejan |date=2001 |title=Finite bases for flat graph algebras |journal=Journal of Algebra |volume=246 |issue=1 |pp=453–469 |issn=0021-8693 |doi=10.1006/jabr.2001.8947 |mr=1872631}}</ref>
<ref name=Lee1991>{{Cite journal |last=Lee |first=S.-M. |date=1991 |title=Simple graph algebras and simple rings |journal=Southeast Asian Bull. Math. |volume=15 |issue=2 |pp=117–121 |issn=0129-2021 |mr=1145431}}</ref>
<ref name=Lee1988>{{Cite journal |last=Lee |first=S.-M. |date=1988 |title=Graph algebras which admit only discrete topologies |journal=Congr. Numer. |volume=64 |pp=147–156 |issn=1736-6046 |mr=0988675}}</ref>
<ref name=Oates-Williams1984>{{Cite journal |last=Oates-Williams |first=Sheila |date=1984 |title=On the variety generated by Murskiĭ's algebra |journal=Algebra Universalis |volume=18 |issue=2 |pp=175–177 |issn=0002-5240 |doi=10.1007/BF01198526 |mr=743465 |s2cid=121598599}}</ref>
<ref name=KelarevMillerSokratova2005>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Miller |first2=M. | last3=Sokratova |first3=O.V. |date=2005 |title=Languages recognized by two-sided automata of graphs |journal=Proc. Estonian Akademy of Science |volume=54 |issue=1 |pp=46–54 |issn=1736-6046 |mr=2126358}}</ref>
<ref name=KelarevSokratova2003>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Sokratova |first2=O.V. |date=2003 |title=On congruences of automata defined by directed graphs |journal=Theoretical Computer Science |volume=301 |issue=1–3 |pp=31–43 |doi=10.1016/S0304-3975(02)00544-3 |issn=0304-3975 |mr=1975219 |url=https://eprints.utas.edu.au/157/1/congruences.pdf }}</ref>
<ref name=KelarevSokratova2001>{{Cite journal |last1=Kelarev |first1=A.V. |last2=Sokratova |first2=O.V. |date=2001 |title=Directed graphs and syntactic algebras of tree languages |journal=J. Automata, Languages & Combinatorics |volume=6 |issue=3 |pp=305–311 |issn=1430-189X |mr=1879773}}</ref>
}}{{refend}}
==Further reading==
{{refbegin}}
* {{Cite book |last=Kelarev |first=A.V. |date=2003 |title=''Graph Algebras and Automata'' |place=New York City |publisher=[[Marcel Dekker]] |isbn=0-8247-4708-9 |mr=2064147 |url-access=registration |via=[[Internet Archive]] |url=https://archive.org/details/graphalgebrasaut0000kela}}
* {{cite journal |last1=Kiss |first1=E.W. |last2=Pöschel |first2=R. |last3=Pröhle |first3=P. |date=1990 |title=Subvarieties of varieties generated by graph algebras |journal=Acta Sci. Math. |volume=54 |issue=1–2 |pp=57–75 |mr=1073419}}
* {{Cite book |last=Raeburn |first=Iain |date=2005 |title=Graph algebras |publisher=[[American Mathematical Society]] |isbn=9780821836606}}
{{refend}}
|