Differentiable vector-valued functions from Euclidean space: Difference between revisions
Content deleted Content added
Added info |
Reworded |
||
Line 32:
The definition given above for curves are now extended from functions valued on subsets of <math>\R</math> to functions valued on open subsets of finite-dimensional [[Euclidean space]]s.
Throughout, let <math>
Suppose <math>t = \left( t_1, \ldots, t_n \right) \in \Omega</math> and <math>f : \operatorname{Dom} f \to Y</math> is a function such that <math>t \in \operatorname{Dom} f</math> with <math>t</math>
::<math>\lim_{\stackrel{p \to t}{t \neq p \in \operatorname{Dom} f}} \frac{f(p) - f(t) - \sum_{i=1}^n \left(p_i - t_i \right) e_i}{\|p - t\|_2} = 0</math> in <math>Y</math>▼
▲Suppose <math>t = \left( t_1, \ldots, t_n \right) \in \Omega</math> and <math>f : \operatorname{Dom} f \to Y</math> is a function such that <math>t \in \operatorname{Dom} f</math> with <math>t</math> a limit point of <math>\operatorname{Dom} f.</math> Then <math>f</math> is '''{{em|differentiable at <math>t</math>}}'''{{sfn|Trèves|2006|pp=412–419}} if there exist <math>n</math> vectors <math>e_1, \ldots, e_n</math> in <math>Y,</math> called the '''{{em|partial derivatives of <math>f</math>}}''', such that
▲::<math>\lim_{\stackrel{p \to t}{p \in \operatorname{Dom} f}} \frac{f(p) - f(t) - \sum_{i=1}^n \left(p_i - t_i \right) e_i}{\|p - t\|_2} = 0</math> in <math>Y</math>
where <math>p = \left(p_1, \ldots, p_n\right).</math>▼
▲where <math>p = \left(p_1, \ldots, p_n\right).</math>
If <math>f</math> is differentiable at a point then it is continuous at that point.{{sfn|Trèves|2006|pp=412–419}}
If <math>f</math> is differentiable at every point in some subset <math>S</math> of its ___domain then <math>f</math> is said to be ('''{{em|once}}''' or '''{{em|<math>1</math>-time}}''') '''{{em|differentiable in <math>S</math>}}''', where if the subset <math>S</math> is not mentioned then it is this means that it is differentiable at every point in its ___domain.
If <math>f</math> is differentiable
Say that <math>f</math> is <math>C^{\infty},</math> '''{{em|smooth}}''' or '''{{em|infinitely differentiable}}''' if <math>f</math> is <math>C^k</math> for all <math>k = 0, 1, \ldots.</math>
== Spaces of ''C''<sup>''k''</sup> vector-valued functions ==
|