Differentiable vector-valued functions from Euclidean space: Difference between revisions
Content deleted Content added
m Reorganized |
Fix |
||
Line 75:
as <math>i,</math> <math>\ell,</math> and <math>\alpha \in A</math> vary in all possible ways.{{sfn|Trèves|2006|pp=412–419}}
If <math>\Omega</math> is a compact space and <math>Y</math> is a Banach space, then <math>C^0(\Omega;Y)</math> becomes a Banach space normed by <math>\| f \| := \sup_{\omega \in \Omega} \| f(\omega) \|.</math>{{sfn|Trèves|2006|pp=446–451}}▼
=== Space of ''C''<sup>''k''</sup> functions with support in a compact subset ===
The definition of the topology of the [[space of test functions]] is now duplicated and generalized.
For any compact subset <math>K \subseteq \Omega,</math>
▲If <math>
Let <math>C^k(K)</math> denote <math>C^k\left(K; \mathbb{F}\right).</math>
:<math>\operatorname{In}_{K}^{L} : C^k(K;Y) \to C^k(L;Y)</math> is an embedding of TVSs and that the union of all <math>C^k(K;Y),</math> as <math>K</math> varies over the compact subsets of <math>\Omega,</math> is <math>C_c^k(\Omega;Y).</math> === Space of compactly support ''C''<sup>''k''</sup> functions ===
For any compact subset <math>K \subseteq \Omega,</math> let
:<math>\operatorname{In}_K : C^k(K;Y) \to C_c^k(\Omega;Y)</math> denote the inclusion map and The spaces <math>C^k(K;Y)</math> and maps <math>\operatorname{In}_{K_1}^{K_2}</math> form a [[direct limit|direct system]] (directed by the compact subsets of <math>\Omega</math>) whose limit in the category of TVSs is <math>C_c^k(\Omega;Y)</math> together with the injections <math>\operatorname{In}_{K}.</math>{{sfn|Trèves|2006|pp=412–419}}
The spaces <math>C^k\left(\overline{\Omega_i}; Y\right)</math> and maps <math>\operatorname{In}_{\overline{\Omega_i}}^{\overline{\Omega_j}}</math> also form a [[direct limit|direct system]] (directed by the total order <math>\mathbb{N}</math>) whose limit in the category of TVSs is <math>C_c^k(\Omega;Y)</math> together with the injections <math>\operatorname{In}_{\overline{\Omega_i}}.</math>{{sfn|Trèves|2006|pp=412–419}}
Each embedding <math>\operatorname{In}_K</math> is an embedding of TVSs.
A subset <math>S</math> of <math>C_c^k(\Omega;Y)</math> is a neighborhood of the origin in <math>C_c^k(\Omega;Y)</math> if and only if <math>S \cap C^k(K;Y)</math> is a neighborhood of the origin in <math>C^k(K;Y)</math> for every compact <math>K \subseteq \Omega.</math>
This direct limit topology (i.e. the final topology) on <math>C_c^\infty(\Omega)</math> is known as the '''{{em|canonical LF topology}}'''.
If <math>Y</math> is a Hausdorff locally convex space, <math>T</math> is a TVS, and <math>u : C_c^k(\Omega;Y) \to T</math> is a linear map, then <math>u</math> is continuous if and only if for all compact <math>K \subseteq \Omega,</math> the restriction of <math>u</math> to <math>C^k(K;Y)</math> is continuous.{{sfn|Trèves|2006|pp=412–419}}
=== Properties ===
{{
Let <math>m</math> be a positive integer and let <math>\Delta</math> be an open subset of <math>\R^m.</math>
Given <math>\phi \in C^k(\Omega \times \Delta),</math> for any <math>y \in \Delta</math> let <math>\phi_y : \Omega \to \mathbb{F}</math> be defined by <math>\phi_y(x) = \phi(x, y)
Then
Furthermore, its restriction
is an isomorphism of TVSs when <math>C_c^\infty\left(\Omega \times \Delta\right)</math> has its canonical LF topology.
}}
{{
Then
▲For every continuous linear form <math>y^{\prime} \in Y</math> and every <math>f \in C^\infty(\Omega;Y),</math> let <math>J_{y^{\prime}}(f) : \Omega \to \mathbb{F}</math> be defined by <math>J_{y^{\prime}}(f)(p) = y^{\prime}(f(p)).</math>
is a continuous linear map; and furthermore,
:<math>J_{y^{\prime}}\big\vert_{C_c^\infty(\Omega;Y)} : C_c^\infty(\Omega;Y) \to C^\infty(\Omega)</math> is also continuous (where <math>C_c^\infty(\Omega;Y)</math> has the canonical LF topology). }}
|