Differentiable vector-valued functions from Euclidean space: Difference between revisions
Content deleted Content added
m Fix |
m Reworded |
||
Line 33:
Throughout, let <math>\Omega</math> be an open subset of <math>\R^n,</math> where <math>n \geq 1</math> is an integer.
Suppose <math>t = \left( t_1, \ldots, t_n \right) \in \Omega</math> and <math>f : \operatorname{
::<math>\lim_{\stackrel{p \to t}{t \neq p \in \operatorname{
where <math>p = \left(p_1, \ldots, p_n\right).</math>
Line 43:
For <math>k \in \N,</math> having defined what it means for a function <math>f</math> to be <math>C^k</math> (or <math>k</math> times continuously differentiable), say that <math>f</math> is '''{{em|<math>k + 1</math> times continuously differentiable}}''' or that '''{{em|<math>f</math> is <math>C^{k+1}</math>}}''' if <math>f</math> is continuously differentiable and each of its partial derivatives is <math>C^k.</math>
Say that <math>f</math> is <math>C^{\infty},</math> '''{{em|smooth}}''', <math>C^\infty,</math> or '''{{em|infinitely differentiable}}''' if <math>f</math> is <math>C^k</math> for all <math>k = 0, 1, \ldots.</math>
The '''{{em|[[Support (mathematics)|support]]}}''' of a function <math>f</math> is the [[Closure (topology)|closure]] (taken in its ___domain <math>\operatorname{
== Spaces of ''C''<sup>''k''</sup> vector-valued functions ==
|