Gravità quantistica a loop: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
mNessun oggetto della modifica
Riga 16:
Dal momento che la formulazione di Ashtekar era indipendente dal background, è stato possibile utilizzare i loop di Wilson come base per la quantizzazione non perturbativa della gravità. L'invarianza del [[diffeomorfismo]] esplicito (spaziale) dello [[Vuoto (fisica)|stato di vuoto]] gioca un ruolo essenziale nella regolarizzazione degli stati del loop di Wilson.
 
Intorno al 1990 [[Carlo Rovelli]] e [[Lee Smolin]] hanno ottenuto una base esplicita degli stati della geometria quantistica che è stata denominata "[[rete di spin"]]. In questo contesto le reti di spin si sono presentate come una generalizzazione dei loop di Wilson necessarie per trattare i loop che si intersecano reciprocamente. Dal punto di vista matematico le reti di spin sono correlate alla teoria del gruppo di rappresentazione e possono essere usate per costruire invarianti di nodi come il polinomiale di Jones.
 
Divenendo strettamente correlata alla teoria quantistica topologica dei campi e alla teoria della rappresentazione di gruppo, la LQG è per la maggior parte costruita ad un livello rigoroso di fisica matematica.