Analytic function of a matrix: Difference between revisions

Content deleted Content added
Diagonalizable matrices: simpler and more accurate
Line 14:
 
===Diagonalizable matrices===
IfA thesquare matrix {{mvar|A}} is [[diagonalizable matrix|diagonalizable]], theif problemthere mayis bean reduced[[invertible tomatrix]] an{{mvar|P}} arraysuch ofthat the<math>D function= onP^{-1}\,A\,P</math> eachis a [[diagonal matrix]], that is, {{math|D}} has the eigenvalue.shape
:<math>f(A) D= P \begin{bmatrix}
This is to say we can find a matrix {{mvar|P}} and a [[diagonal matrix]] {{mvar|D}}
d_1 & \cdots & 0 \\
such that <math>A = P~ D~ P^{-1}</math>.
\vdots & \ddots & \vdots \\
Applying the power series definition to this decomposition, we find that {{math|''f''&hairsp;(''A'')}} is defined by
0 & \cdots & d_n
:<math>f(A) = P \begin{bmatrix}
\end{bmatrix}.</math>
 
such thatAs <math>A = P~ \,D~ \,P^{-1},</math>. it is natural to set
:<math>f(A)=P\, \begin{bmatrix}
f(d_1) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & f(d_n)
\end{bmatrix} \,P^{-1} ~, .</math>
 
where <math>d_1, \dots, d_n</math> denote the diagonal entries of ''D''.
It can be verified that the matrix {{math|''f''(''A'')}} does not depend on a particular choice of {{mvar|P}}.
 
For example, suppose one is seeking <math>\Gamma(A) = (A-1)!</math> for
Line 29 ⟶ 34:
1&3\\
2&1
\end{bmatrix} ~. </math>
 
One has