Content deleted Content added
→Power series: ce |
→Diagonalizable matrices: simpler and more accurate |
||
Line 14:
===Diagonalizable matrices===
d_1 & \cdots & 0 \\
such that <math>A = P~ D~ P^{-1}</math>.▼
\vdots & \ddots & \vdots \\
0 & \cdots & d_n
▲:<math>f(A) = P \begin{bmatrix}
\end{bmatrix}.</math>
:<math>f(A)=P\, \begin{bmatrix}
f(d_1) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & f(d_n)
\end{bmatrix}
It can be verified that the matrix {{math|''f''(''A'')}} does not depend on a particular choice of {{mvar|P}}.
For example, suppose one is seeking <math>\Gamma(A) = (A-1)!</math> for
Line 29 ⟶ 34:
1&3\\
2&1
\end{bmatrix}
One has
|