Content deleted Content added
→Linear systems solutions: expanding on the explanation of zero-input and zero-state responses |
→Estimation of the state-transition matrix: Adding a reference for the invariant case |
||
Line 39:
==Estimation of the state-transition matrix==
In the [[time-invariant]] case, we can define <math> \mathbf{\Phi}</math>, using the [[matrix exponential]], as <math>\mathbf{\Phi}(t, t_0) = e^{\mathbf{A}(t - t_0)}</math>. <ref>{{cite journal |last1=Reyneke |first1=Pieter V. |title=Polynomial Filtering: To any degree on irregularly sampled data |journal=Automatika |date=2012 |volume=53 |pages=382-397}}</ref>
In the [[time-variant]] case, the state-transition matrix <math>\mathbf{\Phi}(t, t_0)</math> can be estimated from the solutions of the differential equation <math>\dot{\mathbf{u}}(t)=\mathbf{A}(t)\mathbf{u}(t)</math> with initial conditions <math>\mathbf{u}(t_0)</math> given by <math>[1,\ 0,\ \ldots,\ 0]^T</math>, <math>[0,\ 1,\ \ldots,\ 0]^T</math>, ..., <math>[0,\ 0,\ \ldots,\ 1]^T</math>. The corresponding solutions provide the <math>n</math> columns of matrix <math>\mathbf{\Phi}(t, t_0)</math>. Now, from property 4,
|