Content deleted Content added
Removed grammatically incorrect comma (i.e., comma between subject and verb) |
m Parentheses sizes |
||
Line 17:
|background colour=#F5FFFA}}
where the
This definition can also be written as<ref name=":2" />
Line 42:
==Basic remarks==
A square matrix <math>\boldsymbol{A}</math> with entries <math>a_{ij}</math> is called
* [[hermitian matrix|Hermitian]] or [[self-adjoint_operator|self-adjoint]] if <math>\boldsymbol{A}=\boldsymbol{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = \overline{a_{ji}}</math>
* [[skew-Hermitian matrix|Skew Hermitian]] or antihermitian if <math>\boldsymbol{A}=-\boldsymbol{A}^\mathrm{H}</math>; i.e., <math>a_{ij} = -\overline{a_{ji}}</math>
* [[normal matrix|Normal]] if <math>\boldsymbol{A}^\mathrm{H} \boldsymbol{A} = \boldsymbol{A} \boldsymbol{A}^\mathrm{H}</math>.
* [[Unitary matrix|Unitary]] if <math>\boldsymbol{A}^\mathrm{H} = \boldsymbol{A}^{-1}</math>, equivalently <math>\boldsymbol{A}\boldsymbol{A}^\mathrm{H} = \boldsymbol{I}</math>, equivalently <math>\boldsymbol{A}^\mathrm{H}\boldsymbol{A} = \boldsymbol{I}</math>.
Line 55:
== Motivation ==
The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2×2 real matrices, obeying matrix addition and multiplication:
:<math>a + ib \equiv \begin{
That is, denoting each ''complex'' number ''z'' by the ''real'' 2×2 matrix of the linear transformation on the [[Argand diagram]] (viewed as the ''real'' vector space <math>\mathbb{R}^2</math>), affected by complex ''z''-multiplication on <math>\mathbb{C}</math>.
Line 65:
* <math>(z\boldsymbol{A})^\mathrm{H} = \overline{z} \boldsymbol{A}^\mathrm{H}</math> for any complex number <math>z</math> and any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>.
* <math>(\boldsymbol{A}\boldsymbol{B})^\mathrm{H} = \boldsymbol{B}^\mathrm{H} \boldsymbol{A}^\mathrm{H}</math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math> and any ''n''-by-''p'' matrix <math>\boldsymbol{B}</math>. Note that the order of the factors is reversed.<ref name=":1" />
* <math>\left(\boldsymbol{A}^\mathrm{H}\right)^\mathrm{H} = \boldsymbol{A}</math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>, i.e. Hermitian transposition is an [[Involution (mathematics)|involution]].
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\operatorname{tr}\left(\boldsymbol{A}^\mathrm{H}\right) = \overline{\operatorname{tr}(\boldsymbol{A})}</math> where <math>\operatorname{tr}(A)</math> denotes the [[trace (matrix)|trace]] of <math>\boldsymbol{A}</math>.
* <math>\boldsymbol{A}</math> is [[invertible matrix|invertible]] [[if and only if]] <math>\boldsymbol{A}^\mathrm{H}</math> is invertible, and in that case <math>\left(\boldsymbol{A}^\mathrm{H}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{H}}</math>.
* The [[eigenvalue]]s of <math>\boldsymbol{A}^\mathrm{H}</math> are the complex conjugates of the [[eigenvalue]]s of <math>\boldsymbol{A}</math>.
* <math>\left\langle \boldsymbol{A} x,y \right\rangle_m = \left\langle x, \boldsymbol{A}^\mathrm{H} y\right\rangle_n </math> for any ''m''-by-''n'' matrix <math>\boldsymbol{A}</math>, any vector in <math>x \in \mathbb{C}^n </math> and any vector <math>y \in \mathbb{C}^m </math>. Here, <math>\langle\cdot,\cdot\rangle_m</math> denotes the standard complex [[inner product]] on <math> \mathbb{C}^m </math>, and similarly for <math>\langle\cdot,\cdot\rangle_n</math>.
==Generalizations==
|