Fixed-point lemma for normal functions: Difference between revisions

Content deleted Content added
add short description, as per WP:SHORTDESC
m Proof: Use LaTeX Math
Line 18:
 
== Proof ==
The first step of the proof is to verify that ''<math>f''(γ\gamma) ≥ γ\ge\gamma</math> for all ordinals γ<math>\gamma</math> and that ''<math>f''</math> commutes with suprema. Given these results, inductively define an increasing sequence &lt;α<submath>''\langle\alpha_n\rangle_{n''<\omega}</submath>&gt; (''n'' &lt; ω) by setting α<sub>0</submath>\alpha_0 = α\alpha</math>, and α<submath>''\alpha_{n''+1</sub>} = ''f''(α<sub>''n''\alpha_n)</submath>) for ''<math>n'' ∈ ω\in\omega</math>. Let β<math>\beta = sup \sup_{α<sub>''n''<\omega} \alpha_n</submath> : ''n'' ∈ ω}, so β ≥ α<math>\beta\ge\alpha</math>. Moreover, because ''<math>f''</math> commutes with suprema,
:<math>f(\beta) = f(\sup_{n<\omega} \alpha_n</math>
:''f''(β) = ''f''(sup {α<sub>''n''</sub> : ''n'' &lt; ω})
:<math>\qquad = \sup_{n<\omega} f(\alpha_n)</math>
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = sup {''f''(α<sub>''n''</sub>) : ''n'' &lt; ω}
:<math>\qquad = \sup_{n<\omega} \alpha_{n+1}</math>
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = sup {α<sub>''n''+1</sub> : ''n'' &lt; ω}
:<math>\qquad = \beta</math>
:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; = β.
The last equality follows from the fact that the sequence &lt;α<submath>''n''\langle\alpha_n\rangle_n</submath>&gt; increases. <math> \square </math>
 
As an aside, it can be demonstrated that the β<math>\beta</math> found in this way is the smallest fixed point greater than or equal to α<math>\alpha</math>.
 
== Example application ==