Circuit complexity: Difference between revisions

Content deleted Content added
References: improved refs
improved refs
Line 34:
Circuit complexity goes back to [[Claude Shannon|Shannon]] in 1949,<ref name="Shannon_1949"/> who proved that almost all Boolean functions on ''n'' variables require circuits of size Θ(2<sup>''n''</sup>/''n''). Despite this fact, complexity theorists have only been able to prove [[Time complexity#Superpolynomial time|superpolynomial]] circuit lower bounds on functions explicitly constructed for the purpose of being hard to calculate.
 
More commonly, superpolynomial lower bounds have been proved under certain restrictions on the family of circuits used. The first function for which superpolynomial circuit lower bounds were shown was the [[parity function]], which computes the sum of its input bits modulo 2. The fact that parity is not contained in [[AC0|AC<sup>0</sup>]] was first established independently by Ajtai in 1983<ref name="Ajtai_1983"/><ref name="Ajtai-Komlós-Szemerédi_1983"/> and by Furst, Saxe and Sipser in 1984.<ref name="Furst-Saxe-Sipser_1984"/> Later improvements by [[Johan Håstad|Håstad]] in 1987<ref name=Håstad_1987"Håstad_1987"/> established that any family of constant-depth circuits computing the parity function requires exponential size. Extending a result of Razborov,<ref name="Razborov_1985"/> Smolensky in 1987<ref name="Smolensky_1987"/> proved that this is true even if the circuit is augmented with gates computing the sum of its input bits modulo some odd prime ''p''.
 
The [[clique problem|''k''-clique problem]] is to decide whether a given graph on ''n'' vertices has a clique of size ''k''. For any particular choice of the constants ''n'' and ''k'', the graph can be encoded in binary using <math>{n \choose 2}</math> bits, which indicate for each possible edge whether it is present. Then the ''k''-clique problem is formalized as a function <math>f_k:\{0,1\}^{{n \choose 2}}\to\{0,1\}</math> such that <math>f_k</math> outputs 1 if and only if the graph encoded by the string contains a clique of size ''k''. This family of functions is monotone and can be computed by a family of circuits, but it has been shown that it cannot be computed by a polynomial-size family of monotone circuits (that is, circuits with AND and OR gates but without negation). The original result of [[Alexander Razborov|Razborov]] in 1985<ref name="Razborov_1985"/> was later improved to an exponential-size lower bound by Alon and Boppana in 1987.<ref name="Alon-Boppana_1987"/> In 2008, Rossman<ref name="Rossman_2008"/> showed that constant-depth circuits with AND, OR, and NOT gates require size <math>\Omega(n^{k/4})</math> to solve the ''k''-clique problem even in the [[average-case complexity|average case]]. Moreover, there is a circuit of size <math>n^{k/4+O(1)}</math> that computes <math>f_k</math>.
Line 77:
<ref name="Santhanam_2007">{{cite conference |author-last=Santhanam |author-first=Rahul |url=http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.111.1811 |title=Circuit lower bounds for Merlin-Arthur classes |book-title=STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing |date=2007 |pages=275–283 |doi=10.1145/1250790.1250832 |citeseerx=10.1.1.92.4422}}</ref>
<ref name="Williams_2011">{{cite conference |author-last=Williams |author-first=Ryan |title=Non-Uniform ACC Circuit Lower Bounds |url=http://www.stanford.edu/~rrwill/acc-lbs.pdf |doi=10.1109/CCC.2011.36 |date=2011 |book-title=CCC 2011: Proceedings of the 26th Annual IEEE Conference on Computational Complexity |pages=115–125}}</ref>
<ref name="Kabanets-Impagliazzo_2004">{{cite journal |author-last1=Kabanets |author-first1=V.Valentine |author-last2=Impagliazzo |author-first2=R.Russell Graham |author-link3=Russell Graham Impagliazzo |journal=Computational Complexity |doi=10.1007/s00037-004-0182-6 |title=Derandomizing polynomial identity tests means proving circuit lower bounds |pages=1–46 |volume=13 |number=1 |date=2004}}</ref>
<ref name="Razborov-Rudich_1997">{{cite news |author-first1=Aleksandr Aleksandrovich |author-last1=Razborov |author-link1=Aleksandr Aleksandrovich Razborov |author-first2=Stephen |author-last2=Rudich |title=Natural proofs |journal=[[Journal of Computer and System Sciences]] |volume=55 |pages=24–35 |date=1997}}</ref>
<ref name="Carmosino-Impagliazzo-Kabanets-Kolokolova_2016">{{cite news |author-first1=Marco |author-last1=Carmosino |author-first2=Russell Graham |author-last2=Impagliazzo |author-link2=Russell Graham Impagliazzo |author-first3=Valentine |author-last3=Kabanets |author-first4=Antonina |author-last4=Kolokolova |title=Learning algorithms from natural proofs |journal=Computational Complexity Conference |date=2016}}</ref>
<ref name="Hesse_2001">{{cite conference |author-first=William |author-last=Hesse |title=Division is in uniform TC<sup>0</sup> |date=2001 |pages=104–114 |book-title=Proc. 28th International Colloquium on Automata, Languages and Programming |publisher=[[Springer Verlag]]}}</ref>
<ref name="Raz-McKenzie_1999">{{cite journal |author-first1=Ran |author-last1=Raz |author-first2=Pierre |author-last2=McKenzie |title=Separation of the monotone NC hierarchy |journal=[[Combinatorica]] |volume=19 |number=3 |date=1999 |pages=403–435 |doi=10.1007/s004930050062}}</ref>
<ref name="Allender_1997">{{cite web |url=http://ftp.cs.rutgers.edu/pub/allender/fsttcs.pdf |title=Circuit Complexity before the Dawn of the New Millennium |date=1997 |editor-first=Eric |editor-last=Allender}} [http://ftp.cs.rutgers.edu/pub/allender/fsttcs.96.slides.ps] (NB. A 1997 survey of the field by Eric Allender.)</ref>
<ref name="Shannon_1949">{{cite journal |author-last=Shannon |author-first=Claude Elwood |author-link=Claude Elwood Shannon |title=The synthesis of two-terminal switching circuits |journal=[[Bell System Technical Journal]] |date=1949 |volume=28| number=1 |pages=59–98 |doi=10.1002/j.1538-7305.1949.tb03624.x}}</ref>
<ref name=Håstad_1987"Håstad_1987">{{cite book |author-first=Johan Torkel |author-last=Håstad |author-link=Johan Torkel Håstad |title=Computational limitations of small depth circuits |date=1987 |type=Ph.D. thesis |publisher=Massachusetts Institute of Technology |url=http://www.nada.kth.se/~johanh/thesis.pdf}}</ref>
<ref name="Razborov_1985">{{cite journal |author-first=Aleksandr Aleksandrovich |author-last=Razborov |author-link=Aleksandr Aleksandrovich Razborov |title=Lower bounds on the monotone complexity of some Boolean functions |date=1985 |journal=[[Soviet Mathematics - Doklady]] |issn=0197-6788 |volume=31 |pages=354–357}}</ref>
<ref name="Rossman_2008">{{cite conference |author-first=Benjamin |author-last=Rossman |title=On the constant-depth complexity of k-clique |date=2008 |pages=721–730 |book-title=STOC 2008: Proceedings of the 40th annual ACM symposium on Theory of computing |publisher=[[Association for Computing Machinery]] |doi=10.1145/1374376.1374480}}</ref>
<ref name="Smolensky_1987">{{cite conference |author-first=Roman |author-last=Smolensky |title=Algebraic methods in the theory of lower bounds for Boolean circuit complexity |date=1987 |pages=77–82 |book-title=Proc.Proceedings 19th Annual ACM Symposium on Theory of Computing |publisher=[[Association for Computing Machinery]] |doi=10.1145/28395.28404}}</ref>
<ref name="Alon-Boppana_1987">{{cite journal |author-first1=Noga |author-last1=Alon |author-first2=Ravi B. |author-last2=Boppana |title=The monotone circuit complexity of Boolean functions |journal=[[Combinatorica]] |volume=7 |date=1987 |number=1 |pages=1–22 |doi=10.1007/bf02579196 |citeseerx=10.1.1.300.9623}}</ref>
}}
 
==Further reading==
* {{cite book |title=Introduction to Circuit Complexity: a Uniform Approach |author-last=Vollmer |author-first=Heribert |author-link=:de:Heribert Vollmer |publisher=[[Springer Verlag]] |date=1999 |isbn=978-3-540-64310-4}}
* {{cite book |author-last=Wegener |author-first=Ingo |author-link=Ingo Wegener |title=The Complexity of Boolean Functions |series=Wiley–Teubner Series in Computer Sciences |publisher=[[John Wiley and& Sons Ltd.]], and [[B. G. Teubner Verlag]], Stuttgart |date=1987 |orig-date=November 1986 |___location=Frankfurt am Main/Bielefeld, Germany |isbn=3-519-02107-2<!-- Teubner --> |id={{ISBN|0-471-91555-6<!-- Wiley -->|978-3-519-02107-0}} |lccn=87-10388}} (xii+457 pages) (NB. At the time an influential textbook on the subject, commonly known as the "Blue Book". Also available for [http://eccc.hpi-web.de/static/books/The_Complexity_of_Boolean_Functions/ download (PDF)] at the [[Electronic Colloquium on Computational Complexity]].)
* {{cite web |url=http://www.cs.tau.ac.il/~zwick/scribe-boolean.html |title=Lecture notes for a course of Uri Zwick on circuit complexity |author-first=Uri |author-last=Zwick |author-link=Uri Zwick |url=http://www.cs.tau.ac.il/~zwick/scribe-boolean.html}}
 
[[Category:Circuit complexity| ]]