Recurrence plot: Difference between revisions

Content deleted Content added
m Detailed description: Removed extraneous symbols
m Detailed description: Clarifying that linear trend is separate from logistic map
Line 31:
The visual appearance of a recurrence plot gives hints about the dynamics of the system. Caused by characteristic behaviour of the phase space trajectory, a recurrence plot contains typical small-scale structures, as single dots, diagonal lines and vertical/horizontal lines (or a mixture of the latter, which combines to extended clusters). The large-scale structure, also called ''texture'', can be visually characterised by ''homogenous'', ''periodic'', ''drift'' or ''disrupted''. For example, the plot can show if the trajectory is strictly periodic with period <math>T</math>, then all such pairs of times will be separated by a multiple of <math>T</math> and visible as diagonal lines.
 
[[Image:Rp examples740.gif|thumb|center|740px|Typical examples of recurrence plots (top row: [[time series]] (plotted over time); bottom row: corresponding recurrence plots). From left to right: uncorrelated stochastic data ([[white noise]]), [[harmonic oscillation]] with two frequencies, chaotic data with linear trend ([[logistic map]]) with linear trend, and data from an [[autoregressive process|auto-regressive process]].]]
 
The small-scale structures in RPs are used by the [[recurrence quantification analysis]] (Zbilut & Webber 1992; Marwan et al. 2002). This quantification allows us to describe the RPs in a quantitative way and to study transitions or nonlinear parameters of the system. In contrast to the heuristic approach of the recurrence quantification analysis, which depends on the choice of the embedding parameters, some [[dynamical invariant]]s as [[correlation dimension]], [[K2 entropy]] or [[mutual information]], which are independent on the embedding, can also be derived from recurrence plots. The base for these dynamical invariants are the recurrence rate and the distribution of the lengths of the diagonal lines.