Content deleted Content added
Erel Segal (talk | contribs) |
Erel Segal (talk | contribs) |
||
Line 8:
==Algorithms==
Minimizing the ''average'' completion time can be done in polynomial time:
The '''SPT algorithm''' (Shortest Processing Time First), which runs in time O(''n'' log ''n''), minimizes the ''average'' completion time on ''identical'' machines.<ref>{{Cite journal|last=Horowitz|first=Ellis|last2=Sahni|first2=Sartaj|date=1976-04-01|title=Exact and Approximate Algorithms for Scheduling Nonidentical Processors|url=https://doi.org/10.1145/321941.321951|journal=Journal of the ACM|volume=23|issue=2|pages=317–327|doi=10.1145/321941.321951|issn=0004-5411}}</ref> ▼
▲* The '''SPT algorithm''' (Shortest Processing Time First),
'''Bruno, Coffman and Sethi'''<ref>{{Cite journal|last=Bruno|first=J.|last2=Coffman|first2=E. G.|last3=Sethi|first3=R.|date=1974-07-01|title=Scheduling independent tasks to reduce mean finishing time|url=https://doi.org/10.1145/361011.361064|journal=Communications of the ACM|volume=17|issue=7|pages=382–387|doi=10.1145/361011.361064|issn=0001-0782}}</ref> present an algorithm, running in time <math>O(\max(m n^2,n^3))</math>, for minimizing the ''average'' completion time on ''unrelated'' machines. They show that minimizing the ''weighted average'' completion time is NP-hard even on ''identical'' machines, by reduction from the [[Knapsack problem|knapsack problem.]]▼
* '''Horowitz and Sahni<ref name=":0" />''' present an exact algorithm, with run time O(''n'' log ''m n''), for minimizing the average completion time on ''uniform'' machines.
▲* '''Bruno, Coffman and Sethi'''<ref>{{Cite journal|last=Bruno|first=J.|last2=Coffman|first2=E. G.|last3=Sethi|first3=R.|date=1974-07-01|title=Scheduling independent tasks to reduce mean finishing time|url=https://doi.org/10.1145/361011.361064|journal=Communications of the ACM|volume=17|issue=7|pages=382–387|doi=10.1145/361011.361064|issn=0001-0782}}</ref> present an algorithm, running in time <math>O(\max(m n^2,n^3))</math>, for minimizing the
The
'''Horowitz and Sahni<ref name=":0">{{Cite journal|last=Horowitz|first=Ellis|last2=Sahni|first2=Sartaj|date=1976-04-01|title=Exact and Approximate Algorithms for Scheduling Nonidentical Processors|url=https://doi.org/10.1145/321941.321951|journal=Journal of the ACM|volume=23|issue=2|pages=317–327|doi=10.1145/321941.321951|issn=0004-5411}}</ref>''' present
'''Hochbaum and Shmoys''',<ref>{{Cite journal|last=Hochbaum|first=Dorit S.|last2=Shmoys|first2=David B.|date=1988-06-01|title=A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach|url=https://epubs.siam.org/doi/abs/10.1137/0217033|journal=SIAM Journal on Computing|volume=17|issue=3|pages=539–551|doi=10.1137/0217033|issn=0097-5397}}</ref> who developed a PTAS for identical processors, extended their PTAS to handle processors with different speeds.
|