Additive function: Difference between revisions

Content deleted Content added
m added wikilinks
Line 3:
{{more footnotes|date=February 2013}}
 
In [[number theory]], an '''{{anchor|definition-additive_function-number_theory}}additive function''' is an [[arithmetic function]] ''f''(''n'') of the positive [[integer]] variable ''n'' such that whenever ''a'' and ''b'' are [[coprime]], the function ofapplied to the product ''ab'' is the sum of the functionsvalues of the function applied to ''a'' and ''b'':<ref name="Erdos1939">Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077746/ online]</ref>
:''f''(''ab'') = ''f''(''a'') + ''f''(''b'').
 
Line 13:
== Examples ==
 
ExampleExamples of arithmetic functions which are completely additive are:
 
* The restriction of the [[logarithm|logarithmic function]] to '''N'''.
* The '''multiplicity''' of a [[prime number|prime]] factor ''p'' in ''n'', that is the largest exponent ''m'' for which ''p<sup>m</sup>'' [[divisor|divides]] ''n''.
* ''a''<sub>0</sub>(''n'') - the sum of primes dividing ''n'' counting multiplicity, sometimes called sopfr(''n''), the potency of ''n'' or the integer logarithm of ''n'' {{OEIS|A001414}}. For example:
 
::''a''<sub>0</sub>(4) = 2 + 2 = 4
::''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> · 5) = 2 + 2 + 5 = 9
::''a''<sub>0</sub>(27) = 3 + 3 + 3 = 9
::''a''<sub>0</sub>(144) = ''a''<sub>0</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(3<sup>2</sup>) = 8 + 6 = 14
::''a''<sub>0</sub>(2,0002000) = ''a''<sub>0</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(5<sup>3</sup>) = 8 + 15 = 23
::''a''<sub>0</sub>(2,0032003) = 2003
::''a''<sub>0</sub>(54,032,858,972,279) = 1240658
::''a''<sub>0</sub>(54,032,858,972,302) = 1780417
Line 37:
::Ω(27) = Ω(3·3·3) = 3
::Ω(144) = Ω(2<sup>4</sup> · 3<sup>2</sup>) = Ω(2<sup>4</sup>) + Ω(3<sup>2</sup>) = 4 + 2 = 6
::Ω(2,0002000) = Ω(2<sup>4</sup> · 5<sup>3</sup>) = Ω(2<sup>4</sup>) + Ω(5<sup>3</sup>) = 4 + 3 = 7
::Ω(2,0012001) = 3
::Ω(2,0022002) = 4
::Ω(2,0032003) = 1
::Ω(54,032,858,972,279) = 3
::Ω(54,032,858,972,302) = 6
::Ω(20,802,650,704,327,415) = 7
 
ExampleExamples of arithmetic functions which are additive but not completely additive are:
 
* ω(''n''), defined as the total number of ''different''distinct [[prime factor#Omega functions|prime factors]] of ''n'' {{OEIS|A001221}}. For example:
 
::ω(4) = 1
Line 54:
::ω(27) = ω(3<sup>3</sup>) = 1
::ω(144) = ω(2<sup>4</sup> · 3<sup>2</sup>) = ω(2<sup>4</sup>) + ω(3<sup>2</sup>) = 1 + 1 = 2
::ω(2,0002000) = ω(2<sup>4</sup> · 5<sup>3</sup>) = ω(2<sup>4</sup>) + ω(5<sup>3</sup>) = 1 + 1 = 2
::ω(2,0012001) = 3
::ω(2,0022002) = 4
::ω(2,0032003) = 1
::ω(54,032,858,972,279) = 3
::ω(54,032,858,972,302) = 5
::ω(20,802,650,704,327,415) = 5
 
* ''a''<sub>1</sub>(''n'') - the sum of the distinct primes dividing ''n'', sometimes called sopf(''n'') {{OEIS|A008472}}. For example:
 
::''a''<sub>1</sub>(1) = 0
Line 69:
::''a''<sub>1</sub>(27) = 3
::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5
::''a''<sub>1</sub>(2,0002000) = ''a''<sub>1</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7
::''a''<sub>1</sub>(2,0012001) = 55
::''a''<sub>1</sub>(2,0022002) = 33
::''a''<sub>1</sub>(2,0032003) = 2003
::''a''<sub>1</sub>(54,032,858,972,279) = 1238665
::''a''<sub>1</sub>(54,032,858,972,302) = 1780410
Line 101:
:<math>\mathcal{M}_{f^2}(x) = x E^2(x) + O(x D^2(x)).</math>
 
There is always an absolute constant <math>C_f > 0</math> such that for all [[natural numbersnumber]]s <math>x \geq 1</math>,
 
:<math>\sum_{n \leq x} |f(n) - E(x)|^2 \leq C_f \cdot x D^2(x).</math>
Line 107:
Let
 
:<math> \nu(x; z) := \frac{1}{x} \#\!\left\{n \leq x: \frac{f(n)-A(x)}{B(x)} \leq z\right\}\!.</math>
 
Suppose that <math>f</math> is an additive function with <math>-1 \leq f(p^{\alpha}) = f(p) \leq 1</math>