Modulus and characteristic of convexity: Difference between revisions

Content deleted Content added
m doi-access=free
m full journal titles
Line 17:
| first = Mahlon
| title = Uniform convexity in factor and conjugate spaces
| journal = Ann.Annals of Math.Mathematics |series = 2
| volume = 45
| year = 1944
Line 34:
* When ''X'' is uniformly convex, it admits an equivalent norm with power type modulus of convexity.<ref>see {{citation
| last=Pisier |first=Gilles |author-link=Gilles Pisier
| title= Martingales with values in uniformly convex spaces | journal=[[Israel J.Journal Math.of Mathematics]] | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | doi-access=free | mr=394135|s2cid=120947324 }}
.</ref> Namely, there exists {{nowrap|''q'' &ge; 2}} and a constant&nbsp;{{nowrap|''c'' &gt; 0}} such that
::<math>\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].</math>
Line 75:
| first = James
| title = Uniformly convex spaces
| journal = Trans.Transactions Amer.of Math.the Soc.American Mathematical Society
| volume = 40
| year = 1936