An analytical expression for the full range of densities has been proposed based on the many-body perturbation theory. The calculated correlation energies are in agreement with the results from [[quantum Monte Carlo]] simulation to within 2 milli-Hartree.
Accurate [[quantum Monte Carlo]] simulations for the energy of the HEG have been performed for several intermediate values of the density, in turn providing accurate values of the correlation energy density.<ref>{{cite journal | title = Ground State of the Electron Gas by a Stochastic Method | author = D. M. Ceperley and B. J. Alder | journal = Phys. Rev. Lett. | volume = 45 | pages = 566–569 | year = 1980 | doi = 10.1103/PhysRevLett.45.566 | bibcode=1980PhRvL..45..566C | issue = 7| url = https://digital.library.unt.edu/ark:/67531/metadc1059358/ }}</ref> The most popular LDA's to the correlation energy density interpolate these accurate values obtained from simulation while reproducing the exactly known limiting behavior. Various approaches, using different analytic forms for ''ε''<sub>c</sub>, have generated several LDA's for the correlation functional, including
* Vosko-Wilk-Nusair (VWN) <ref name="vwn">{{cite journal | title = Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis | author = S. H. Vosko, L. Wilk and M. Nusair | journal = Can. J. Phys. | volume = 58 | pages = 1200–1211 | year = 1980 | doi = 10.1139/p80-159 |bibcode = 1980CaJPh..58.1200V | issue = 8 | url = https://escholarship.org/content/qt23j4q7zm/qt23j4q7zm.pdf?t=obc5l4 }}</ref>
* Perdew-Zunger (PZ81) <ref name="pz81">{{cite journal | title = Self-interaction correction to density-functional approximations for many-electron systems | author = J. P. Perdew and A. Zunger | journal = Phys. Rev. B | volume = 23 | pages = 5048–5079 | year = 1981 | doi = 10.1103/PhysRevB.23.5048 |bibcode = 1981PhRvB..23.5048P | issue = 10 | doi-access = free }}</ref>
* Cole-Perdew (CP) <ref>{{cite journal | title = Calculated electron affinities of the elements | author = L. A. Cole and J. P. Perdew | journal = Phys. Rev. A | volume = 25 | pages = 1265–1271 | year = 1982 | doi = 10.1103/PhysRevA.25.1265 |bibcode = 1982PhRvA..25.1265C | issue = 3 }}</ref>
* Perdew-Wang (PW92) <ref name=pw92>{{cite journal | title = Accurate and simple analytic representation of the electron-gas correlation energy | author = John P. Perdew and Yue Wang | journal = Phys. Rev. B | volume = 45 | pages = 13244–13249 | year = 1992 | doi = 10.1103/PhysRevB.45.13244 | pmid = 10001404 |bibcode = 1992PhRvB..4513244P | issue = 23 }}</ref>
Predating these, and even the formal foundations of DFT itself, is the Wigner correlation functional obtained [[Møller–Plesset perturbation theory#Rayleigh-Schr.C3.B6dinger perturbation theory|perturbatively]] from the HEG model.<ref name=wigner>{{cite journal | title = On the Interaction of Electrons in Metals | author = E. Wigner | journal = Phys. Rev. | volume = 46 | pages = 1002–1011 | year = 1934 | doi = 10.1103/PhysRev.46.1002 |bibcode = 1934PhRv...46.1002W | issue = 11 }}</ref>
== Spin polarization ==
<math>\zeta = 0\,</math> corresponds to the diamagnetic spin-unpolarized situation with equal
<math>\alpha\,</math> and <math>\beta\,</math> spin densities whereas <math>\zeta = \pm 1</math> corresponds to the ferromagnetic situation where one spin density vanishes. The spin correlation energy density for a given values of the total density and relative polarization, ''ε''<sub>c</sub>(''ρ'',''ς''), is constructed so to interpolate the extreme values. Several forms have been developed in conjunction with LDA correlation functionals.<ref name="vwn"/><ref>{{cite journal|last=von Barth|first=U.|author2=Hedin, L. |year=1972|title=A local exchange-correlation potential for the spin polarized case|journal=J. Phys. C: Solid State Phys.|volume=5|pages=1629–1642|doi=10.1088/0022-3719/5/13/012|bibcode = 1972JPhC....5.1629V|issue=13 }}</ref>
== Illustrative calculations ==
LDA calculations are in reasonable agreement with experimental values.
{| class="wikitable"
|+ Ionization potentials (eV) <ref name="parryang"/>
|-
!
! LSD
! LDA
! HF
! Exp.
|- align="center"
| H || 13.4 || 12.0 || 13.6 || 13.6
|- align="center"
| He || 24.5 || 26.4 || || 24.6
|- align="center"
| Li || 5.7 || 5.4 || 5.3 || 5.4
|- align="center"
| Be || 9.1 || || 8.0 || 9.3
|- align="center"
| B || 8.8 || || 7.9 || 8.3
|- align="center"
| C || 12.1 || || 10.8 || 11.3
|- align="center"
| N || 15.3 || || 14.0 || 14.5
|- align="center"
| O || 14.2 || 16.5 || 11.9 || 13.6
|- align="center"
| F || 18.4 || || 16.2 || 17.4
|- align="center"
| Ne || 22.6 || 22.5 || 19.8 || 21.6
|}
{| class="wikitable"
|+ Calculated bond-length (Angstrom)<ref name="parryang"/>
|-
!
! Exp.
! LSD
! Error
|- align="center"
| H<sub>2</sub> || 0.74 || 0.77 || 0.03
|- align="center"
| Li<sub>2</sub> || 2.67 || 2.71 || 0.04
|- align="center"
| B<sub>2</sub> || 1.59 || 1.60 || 0.02
|- align="center"
| C<sub>2</sub> || 1.24 || 1.24 || 0.00
|- align="center"
| N<sub>2</sub> || 1.10 || 1.10 || 0.00
|- align="center"
| O<sub>2</sub> || 1.21 || 1.20 || 0.01
|- align="center"
| F<sub>2</sub> || 1.42 || 1.38 || 0.04
|- align="center"
| Na<sub>2</sub> || 3.08 || 3.00 || 0.08
|- align="center"
| Al<sub>2</sub> || 2.47 || 2.46 || 0.01
|- align="center"
| Si<sub>2</sub> || 2.24 || 2.27 || 0.03
|- align="center"
| P<sub>2</sub> || 1.89 || 1.89 || 0.01
|- align="center"
| S<sub>2</sub> || 1.89 || 1.89 || 0.00
|- align="center"
| Cl<sub>2</sub> || 1.99 || 1.98 || 0.01
|- align="center"
| Average || || || 0.02
|}
== Exchange-correlation potential ==
|