Funzione di Cantor: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Bot: orfanizzo template:Avvisounicode come da discussione |
m WPCleaner v2.04 - Disambigua corretto un collegamento - Insieme nullo |
||
Riga 33:
== Proprietà ==
La funzione di Cantor è una funzione continua (in quanto limite uniforme di funzioni continue), crescente e [[funzione suriettiva|suriettiva]] dall'intervallo [0, 1] in sé. È [[funzione a variazione limitata|a variazione limitata]] ma non [[Continuità assoluta|assolutamente continua]]. Non è derivabile in nessun punto dell'[[insieme di Cantor]], mentre negli altri punti è derivabile ed ha derivata zero. Quindi è una funzione costante in ogni sottointervallo di [0, 1] che non contenga punti dell'insieme di Cantor (quest'ultimo insieme ha [[misura di Lebesgue|misura]] [[Insieme nullo (teoria della misura)|nulla]]), ossia negli intervalli del tipo (0.''x''<sub>1</sub>''x''<sub>2</sub>''x''<sub>3</sub>...''x''<sub>n</sub>022222..., 0.''x''<sub>1</sub>''x''<sub>2</sub>''x''<sub>3</sub>...''x''<sub>n</sub>200000...). Nonostante questo, è crescente (in senso lato).
La funzione di Cantor, ristretta all'insieme di Cantor, è sempre continua, crescente e suriettiva sull'intervallo
|