Content deleted Content added
m Dating maintenance tags: {{Citation needed}} |
m Fixed CS1 errors: extra text: volume and general fixes |
||
Line 180:
==Multigrid preconditioning==
A multigrid method with an intentionally reduced tolerance can be used as an efficient [[preconditioning|preconditioner]] for an external iterative solver, e.g.,<ref>Andrew V Knyazev, Klaus Neymeyr. [http://etna.mcs.kent.edu/volumes/2001-2010/vol15/abstract.php?vol=15&pages=38-55 Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method]. Electronic Transactions on Numerical Analysis, 15, 38–55, 2003.
If the matrix of the original equation or an eigenvalue problem is symmetric positive definite (SPD), the preconditioner is commonly constructed to be SPD as well, so that the standard [[conjugate gradient]] (CG) [[iterative methods]] can still be used. Such imposed SPD constraints may complicate the construction of the preconditioner, e.g., requiring coordinated pre- and post-smoothing. However, [[preconditioning|preconditioned]] [[steepest descent]] and [[Conjugate gradient method#The flexible preconditioned conjugate gradient method|flexible CG methods]] for SPD linear systems and [[LOBPCG]] for symmetric eigenvalue problems are all shown<ref>Henricus Bouwmeester, Andrew Dougherty, Andrew V Knyazev. [https://doi.org/10.1016/j.procs.2015.05.241 Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods]. Procedia Computer Science, Volume 51, Pages 276–285, Elsevier, 2015. {{DOI | 10.1016/j.procs.2015.05.241}}</ref> to be robust if the preconditioner is not SPD.
Line 194:
Multigrid methods can be generalized in many different ways. They can be applied naturally in a time-stepping solution of [[parabolic partial differential equation]]s, or they can be applied directly to time-dependent [[partial differential equation]]s.<ref>{{cite book |chapter-url=https://books.google.com/books?id=GKDQUXzLTkIC&pg=PA165 |editor1=Are Magnus Bruaset |editor2=Aslak Tveito |title=Numerical solution of partial differential equations on parallel computers |page=165 |chapter=Parallel geometric multigrid |author1=F. Hülsemann |author2=M. Kowarschik |author3=M. Mohr |author4=U. Rüde |publisher=Birkhäuser |year=2006 |isbn=978-3-540-29076-6}}</ref> Research on multilevel techniques for [[hyperbolic partial differential equation]]s is underway.<ref>For example, {{cite book |title=Computational fluid dynamics: principles and applications |page=305 |url=https://books.google.com/books?id=asWGy362QFIC&q=%22The+goal+of+the+current+research+is+the+significant+improvement+of+the+efficiency+of+multigrid+for+hyperbolic+flow+problems%22&pg=PA305 |author= J. Blaz̆ek |year=2001 |isbn=978-0-08-043009-6 |publisher=Elsevier}} and {{cite book |chapter-url=https://books.google.com/books?id=TapltAX3ry8C&pg=PA369 |author=Achi Brandt and Rima Gandlin |chapter=Multigrid for Atmospheric Data Assimilation: Analysis |page=369 |editor1=Thomas Y. Hou |editor2=Eitan Tadmor |editor2-link=Eitan Tadmor |title=Hyperbolic problems: theory, numerics, applications: proceedings of the Ninth International Conference on Hyperbolic Problems of 2002 |year=2003 |isbn=978-3-540-44333-9 |publisher=Springer}}</ref> Multigrid methods can also be applied to [[integral equation]]s, or for problems in [[statistical physics]].<ref>{{cite book |title=Multiscale and multiresolution methods: theory and applications |author=Achi Brandt |chapter-url=https://books.google.com/books?id=mtsy6Ci2TRoC&pg=PA53 |editor1=Timothy J. Barth |editor2=Tony Chan |editor3=Robert Haimes |page=53 |chapter=Multiscale scientific computation: review |isbn=978-3-540-42420-8 |year=2002 |publisher=Springer}}</ref>
Another set of multiresolution methods is based upon [[wavelets]]. These wavelet methods can be combined with multigrid methods.<ref>{{cite book |chapter-url=https://books.google.com/books?id=mtsy6Ci2TRoC&pg=PA140 |author1=Björn Engquist |author2=Olof Runborg |editor1=Timothy J. Barth |editor2=Tony Chan |editor3=Robert Haimes |chapter=Wavelet-based numerical homogenization with applications |title=Multiscale and Multiresolution Methods |isbn=978-3-540-42420-8 |volume=
'''Adaptive multigrid''' exhibits [[adaptive mesh refinement]], that is, it adjusts the grid as the computation proceeds, in a manner dependent upon the computation itself.<ref>{{cite book |author1=U. Trottenberg |author2=C. W. Oosterlee |author3=A. Schüller |title=Multigrid |chapter=Chapter 9: Adaptive Multigrid |chapter-url=https://books.google.com/books?id=-og1wD-Nx_wC&pg=PA356 |page=356 |isbn=978-0-12-701070-0|year=2001 }}</ref> The idea is to increase resolution of the grid only in regions of the solution where it is needed.
|