L'utilizzo di siRNA e relativi shRNA per silenziare specifici geni sta diventando un utile strumento di ''silenziamento genico'' per la ricerca di base. Rimangono tuttavia diversi problemi ancora da superare. Una delle maggiori sfide per terapie basate siRNA e RNAi è la “consegna” intracellulare.<ref name=":0">{{Cita pubblicazione|autore=Petrocca, Fabio and Lieberman|titolo=Promise and Challenge of RNA Interference-Based Therapy for Cancer|rivista=Journal of Oncology. Biology of Neoplasia|volume=29|numero=6}}</ref> La “consegna” di siRNA tramite nanoparticelle ha mostrato risultati promettenti.<ref name=":0" /><ref name=":1">{{Cita pubblicazione|nome=H|cognome=Shen|titolo=Nanovector delivery of siRNA for cancer therapy|rivista=Cancer Gene Therapy|volume=19|numero=6|pp=367–373|doi=10.1038/cgt.2012.22|url=https://www.nature.com/doifinder/10.1038/cgt.2012.22|nome2=T|cognome2=Sun|nome3=M|cognome3=Ferrari}}</ref> Gli oligo siRNA in vivo sono vulnerabili alla degradazione da parte delle nucleasi plasmatiche e tissutali<ref name=":1" /> e hanno mostrato solo una lieve efficacia in target localizzati, come l'occhio umano.<ref name=":2">{{Cita pubblicazione|nome=John C.|cognome=Burnett|data=2012-01-27|titolo=RNA-Based Therapeutics: Current Progress and Future Prospects|rivista=Chemistry & Biology|volume=19|numero=1|pp=60–71|accesso=2016-07-11|doi=10.1016/j.chembiol.2011.12.008|url=https://www.sciencedirect.com/science/article/pii/S1074552111004595|nome2=John J.|cognome2=Rossi}}</ref> Utilizzare DNA puro è impegnativo, a causa della loro grande dimensione e perché la struttura impedisce loro di diffondere facilmente attraverso le membrane.<ref name=":0" />Gli oligo siRNA sembrano aggirare questo problema grazie alle loro piccole dimensioni, 21-23 oligo. Permettendo il loro arrivo a destinazione tramite dei vettori, chiamati nanovettori.<ref name=":2" /> Un buon nanovettore per il targeting tramite siRNA dovrebbe proteggere il siRNA dalla degradazione, aumentando la presenza dei siRNA nell'organo bersaglio e facilitandone l'assorbimento cellulare. I tre gruppi principali di nanovettori per siRNA sono: a base lipidica o non lipidica, a base organica e inorganica. I nanovettori a base lipidica sono eccellenti per il targeting tramite siRNA per i tumori solidi, ma altri tipi di tumore possono richiedere diversi nanovettori organici a base non lipidica, come nanoparticelle a base di ciclodestrine.<ref name=":1" /> I siRNA distribuiti mediante nanoparticelle a base lipidica hanno un potenziale terapeutico per i disturbi del sistema nervoso centrale (SNC), ma la barriera emato-encefalica (BBB), spesso blocca l'accesso a potenziali agenti terapeutici per il cervello. I siRNA distribuiti mediante nanoparticelle a base di lipidi sono in grado di attraversare completamente la BBB<ref>{{Cita pubblicazione|autore=Gomes, Dreier, Brewer et. al.|titolo=A new approach for a blood-brain barrier model based on phospholipid vesicles: Membrane development and siRNA-loaded nanoparticles permability.|rivista=Journal of Membrane Science|volume=503. p.8-15. Published: March 2016.|numero=}}</ref>. Un altro problema nella consegna dei siRNA è la questione dell'off-targeting. Dal momento che i geni vengono letti in entrambe le direzioni, esiste la possibilità che oltre a interferire con l'mRNA bersaglio, il siRNA dell'altro filamento possa interferire con un'altra proteina coinvolta in un'altra funzione. Inoltre, i siRNA mostrano una differente efficacia in differenti tipi cellulari, apparentemente indiscriminatamente (non è infatti possibile definire precisamente se un tipo cellulare sia responsivo ai siRNA oppure no). Rimane in ogni caso il problema delle risposte cellulari aspecifiche, ancora poco comprese. Finché queste due questioni non saranno comprese a fondo e risolte, non sarà possibile la produzione di ''farmaci ad acidi nucleici pienamente affidabili''.