Gravità quantistica a loop: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Recupero di 1 fonte/i e segnalazione di 0 link interrotto/i. #IABot (v2.0beta15) |
|||
Riga 8:
Vi sono state in passato due reazioni all'apparente contraddizione tra la teoria dei quanti e l'indipendenza dal background della relatività generale. La prima è che l'interpretazione geometrica della relatività generale non è fondamentale ma "risultante"', la seconda è che l'indipendenza dal background è fondamentale e la meccanica quantistica necessita di essere generalizzata per definire dove non vi è un tempo stabilito a priori. La LQG va nella seconda direzione, è cioè un tentativo di formulare una teoria quantistica indipendente dal background.
In sintesi, nelle teorie della [[relatività ristretta]] e della [[Relatività generale|gravitazione]] la geometria di riferimento è continua: ragionando in una sola dimensione (anziché in 3), dati due punti distinti A e B sicuramente esiste un punto A' intermedio tra A e B, un punto A<nowiki>''</nowiki> intermedio tra A e A', un punto intermedio A<nowiki>''' tra A e A''</nowiki> e così via all'infinito. Nella LQG, invece, la geometria di riferimento è quantizzata: facendo la stessa operazione di suddivisione tra A e B, tra A e A' e tra A e A<nowiki>''</nowiki> si arriverà alla situazione di avere due punti A e A^ tra i quali non è presente nessun altro punto. Tornando alle tre dimensioni spaziali, ciò significa che partendo da un volume e suddividendolo in volumetti sempre più piccoli, c'è un valore minimo di volume non ulteriormente divisibile<ref>
== Storia ==
|