Additive function: Difference between revisions

Content deleted Content added
m Examples: two different examples shared a bullet; separate them
Fudo (talk | contribs)
Examples: a_1 is not completely additive!
Line 32:
::''a''<sub>0</sub>(54,032,858,972,302) = 1780417
::''a''<sub>0</sub>(20,802,650,704,327,415) = 1240681
:: ...
 
* ''a''<sub>1</sub>(''n'') - the sum of the distinct primes dividing ''n'', sometimes called sopf(''n''). We have ''a''<sub>1</sub>(1) = 0, ''a''<sub>1</sub>(20) = 2 + 5 = 7. Some more values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A008472 OEIS A008472])
 
::''a''<sub>1</sub>(4) = 2
::''a''<sub>1</sub>(27) = 3
::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5
::''a''<sub>1</sub>(2,000) = ''a''<sub>1</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7
::''a''<sub>1</sub>(2,001) = 55
::''a''<sub>1</sub>(2,002) = 33
::''a''<sub>1</sub>(2,003) = 2003
::''a''<sub>1</sub>(54,032,858,972,279) = 1238665
::''a''<sub>1</sub>(54,032,858,972,302) = 1780410
::''a''<sub>1</sub>(20,802,650,704,327,415) = 1238677
:: ...
 
Line 62 ⟶ 48:
:: ...
 
* AnThe examplefunction of''a''<sub>1</sub>(''n'') an- arithmeticthe functionsum whichof isthe additivedistinct butprimes notdividing completely''n'', additivesometimes iscalled ωsopf(''n''), definedis asadditive thebut totalnot numbercompletely ofadditive. We have ''differenta''<sub>1</sub>(1) [[prime= number|prime]] factors of0, ''na''.<sub>1</sub>(20) Some= values2 (compare+ with5 Ω(''n''))= 7. Some more values: ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001221A008472 OEIS A001221A008472])
 
::''a''<sub>1</sub>(4) = 2
::''a''<sub>1</sub>(27) = 3
::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5
::''a''<sub>1</sub>(2,000) = ''a''<sub>1</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7
::''a''<sub>1</sub>(2,001) = 55
::''a''<sub>1</sub>(2,002) = 33
::''a''<sub>1</sub>(2,003) = 2003
::''a''<sub>1</sub>(54,032,858,972,279) = 1238665
::''a''<sub>1</sub>(54,032,858,972,302) = 1780410
::''a''<sub>1</sub>(20,802,650,704,327,415) = 1238677
:: ...
 
* Another example of an arithmetic function which is additive but not completely additive is ω(''n''), defined as the total number of ''different'' [[prime number|prime]] factors of ''n''. Some values (compare with Ω(''n'')) ([http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A001221 OEIS A001221])
: