Content deleted Content added
→Normal form theorem: ditto |
→Symbolism: ditto; rm "we" |
||
Line 61:
== Symbolism ==
A number of different symbolisms are used in the literature. An advantage to using the symbolism is a derivation of a function by "nesting" of the operators one inside the other is easier to write in a compact form. In the following
*
:: e.g. C{{su|b=13|p=7}} ( r, s, t, u, v, w, x ) = 13
:: e.g. const<sub>13</sub> ( r, s, t, u, v, w, x ) = 13
*
:: S(a) = a +1 =<sub>def</sub> a', where 1 =<sub>def</sub> 0', 2 =<sub>def</sub> 0 ' ', etc.
*
: U{{su|b=i|p=n}}( '''x''' ) = id{{su|b=i|p=n}}( '''x''' ) = x<sub>i</sub>
: e.g. U{{su|b=3|p=7}} = id{{su|b=3|p=7}} ( r, s, t, u, v, w, x ) = t
*
:If we are given h( '''x''' )= g( f<sub>1</sub>('''x'''), ... , f<sub>m</sub>('''x''') )
:: h('''x''') = '''S'''{{su|b=m|p=n}}(g, f<sub>1</sub>, ... , f<sub>m</sub> )
Line 80:
:: h(''x''')= Cn[g, f<sub>1</sub> ,..., f<sub>m</sub>]('''x''')
*
:* base step: h( 0, '''x''' )= f( '''x''' ), and
:* induction step: h( y+1, '''x''' ) = g( y, h(y, '''x'''),'''x''' )
Line 90:
::: Pr{ U{{su|b=1|p=1}}(a), S[ (U{{su|b=2|p=3}}( b, c, a ) ] }
:# S(a) = a'
:# U{{su|b=1|p=1}}(a) = a
|