Content deleted Content added
Reworded and copy editing |
|||
Line 158:
=== Properties ===
If <math>F</math> is the vector subspace of <math>Y^T</math> consisting of all continuous linear maps that are bounded on every <math>G \in \mathcal{G},</math> then the <math>\mathcal{G}</math>-topology on <math>F</math> is Hausdorff if <math>Y</math> is Hausdorff and <math>\mathcal{G}</math> is total in <math>T.</math>{{sfn|Narici|Beckenstein|2011|pp=371-423}}
For the following theorems, suppose that <math>X</math> is a topological vector space and <math>Y</math> is a [[locally convex]] Hausdorff spaces and <math>\mathcal{G}</math> is a collection of bounded subsets of <math>X</math> that covers <math>X,</math> is directed by subset inclusion, and satisfies the following condition: if <math>G \in \mathcal{G}</math> and <math>s</math> is a scalar then there exists a <math>H \in \mathcal{G}</math> such that <math>s G \subseteq H.</math>
<ul>
<li><math>L_{\mathcal{G}}(X; Y)</math> is [[Complete topological vector space|complete]] if
{{ordered list|
|<math>X</math> is locally convex and Hausdorff,
Line 181 ⟶ 182:
</ul>
Let <math>X</math> and <math>Y</math> be topological vector spaces and <math>H</math> be a subset of <math>L(X; Y).</math>
Line 191 ⟶ 192:
</ol>
If <math>\mathcal{G}</math> is a collection of bounded subsets of <math>X</math> whose union is [[Total set|total]] in <math>X</math> then every equicontinuous subset of <math>L(X; Y)</math> is bounded in the <math>\mathcal{G}</math>-topology.{{sfn|Schaefer|Wolff|1999|p=83}}
Furthermore, if <math>X</math> and <math>Y</math> are locally convex Hausdorff spaces then
<ul>
<li>
<li>
<li></li>
▲<li>If <math>\mathcal{G}</math> is any collection of bounded subsets of <math>X</math> whose union is total in <math>X</math> then every equicontinuous subset of <math>L(X; Y)</math> is bounded in the <math>\mathcal{G}</math>-topology.{{sfn|Schaefer|Wolff|1999|p=83}}</li>
</ul>
|