Randomized experiment: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: volume, url. URLs might have been anonymized. Add: volume, s2cid. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 534/2199
Line 119:
{{Expand section|date=September 2012}}
 
The [[Rubin Causal Model]] provides a common way to describe a randomized experiment. While the Rubin Causal Model provides a framework for defining the causal parameters (i.e., the effects of a randomized treatment on an outcome), the analysis of experiments can take a number of forms. The model assumes that there are two potential outcomes for each unit in the study: the outcome if the unit receives the treatment and the outcome if the unit does not receive the treatment. The difference between these two potential outcomes is known as the treatment effect, which is the causal effect of the treatment on the outcome. Most commonly, randomized experiments are analyzed using [[ANOVA]], [[student's t-test]], [[regression analysis]], or a similar [[Statistical hypothesis testing|statistical test]]. The model also accounts for potential confounding factors, which are factors that could affect both the treatment and the outcome. By controlling for these confounding factors, the model helps to ensure that any observed treatment effect is truly causal and not simply the result of other factors that are correlated with both the treatment and the outcome.
 
The Rubin Causal Model is a useful a framework for understanding how to estimate the causal effect of the treatment, even when there are confounding variables that may affect the outcome. This model specifies that the causal effect of the treatment is the difference in the outcomes that would have been observed for each individual if they had received the treatment and if they had not received the treatment. In practice, it is not possible to observe both potential outcomes for the same individual, so statistical methods are used to estimate the causal effect using data from the experiment.
 
==Empirical evidence that randomization makes a difference==