Configuration linear program: Difference between revisions

Content deleted Content added
No edit summary
Line 79:
If all items are large (of size at least ''eB''), then each bin in OPT contains at most 1/''e'' items (of size at least ''eB''), so OPT must be at least ''en''. Therefore, Bins(''U'') ≤ (1+''e'')OPT.
 
Karmarkar and Karp<ref name=":12" /> present a more efficient rounding method which they call ''geometric rounding'' (in contrast to the linear rounding of de-la-Vega and Lueker). Based on these innovations, they present an algorithm with run-time polynomial in <math>n</math> and <math>1/\varepsilon</math>. Their algorithm finds a solution with size at most <math>\mathrm{OPT} + \mathcal{O}(\log^2(OPT))</math>.
 
=== Solving the integer LP for the rounded instance ===
A simple way to solve the integer LP is by exhaustive search. Since there are at most ''S<sup>1/e</sup>'' configurations, and for each configuration there are at most ''n'' possible values, there are at most <math> n^{S^{1/e}}</math> combinations to check. For each combination, we have to check ''S'' constraints, so the run-time is <math>S\cdot n^{S^{1/e}}</math>, which is polynomial in ''n'' when ''S, e'' are constant.<ref name=":2">{{Cite web|last=Claire Mathieu|title=Approximation Algorithms Part I, Week 3: bin packing|url=https://www.coursera.org/learn/approximation-algorithms-part-1/home/week/3|url-status=live|website=Coursera}}</ref>
 
Based on these innovations, they present an algorithm with run-time polynomial in <math>n</math> and <math>1/\varepsilon</math>. Their algorithm finds a solution with size at most <math>\mathrm{OPT} + \mathcal{O}(\log^2(OPT))</math>.
 
=== Improvements ===
This technique was later improved by several authors: