Content deleted Content added
m v2.04b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
Citation bot (talk | contribs) Alter: journal, issn. Add: hdl, url, s2cid, doi, page. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 633/3849 |
||
Line 3:
Interval Predictor Models are sometimes referred to as a [[nonparametric regression]] technique, because a potentially infinite set of functions are contained by the IPM, and no specific distribution is implied for the regressed variables.
Multiple-input multiple-output IPMs for multi-point data commonly used to represent functions have been recently developed.<ref>{{cite journal |last1=Crespo |first1=Luis |last2=Kenny |first2=Sean |last3=Colbert |first3=Brendon |last4=Slagel |first4=Tanner |title=Interval Predictor Models for Robust System Identification |journal=IEEE CDC 2021 |date=December 2021}}</ref> These IPM prescribe the parameters of the model as a path-connected, semi-algebraic set using sliced-normal <ref>{{cite journal |last1=Crespo |first1=Luis |last2=Colbert |first2=Brendon |last3=Kenny |first3=Sean |last4=Giesy |first4=Daniel |title=On the quantification of aleatory and epistemic uncertainty using Sliced-Normal distributions |journal=Systems and
As a consequence of the theory of [[scenario optimization]], in many cases rigorous predictions can be made regarding the performance of the model at test time.<ref name="CampiCalafiore2009">{{cite journal|last1=Campi|first1=M.C.|last2=Calafiore|first2=G.|last3=Garatti|first3=S.|title=Interval predictor models: Identification and reliability|journal=Automatica|volume=45|issue=2|year=2009|pages=382–392|issn=
Hence an interval predictor model can be seen as a guaranteed bound on [[quantile regression]].
Interval predictor models can also be seen as a way to prescribe the [[Support_(mathematics)#Support_of_a_distribution|support]] of random predictor models, of which a [[Gaussian process]] is a specific case
.<ref name="CrespoKenny2018">{{cite journal|last1=Crespo|first1=Luis G.|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|title=Staircase predictor models for reliability and risk analysis|journal=Structural Safety|volume=75|year=2018|pages=35–44|issn=
== Convex interval predictor models ==
Line 23:
The reliability of such an IPM is obtained by noting that for a convex IPM the number of support constraints is less than the dimensionality of the [[trainable parameter]]s, and hence the scenario approach can be applied.
Lacerda (2017) demonstrated that this approach can be extended to situations where the training data is interval valued rather than point valued.<ref name="LacerdaCrespo2017">{{cite book|last1=Lacerda|first1=Marcio J.|title=2017 American Control Conference (ACC)|last2=Crespo|first2=Luis G.|chapter=Interval predictor models for data with measurement uncertainty|year=2017|pages=1487–1492|doi=10.23919/ACC.2017.7963163|isbn=978-1-5090-5992-8|hdl=2060/20170005690|s2cid=3713493 }}</ref>
== Non-convex interval predictor models ==
In Campi (2015) a non-convex theory of scenario optimization was proposed.<ref name="CampiGaratti2015">{{cite book|last1=Campi|first1=Marco C.|title=2015 54th IEEE Conference on Decision and Control (CDC)|last2=Garatti|first2=Simone|last3=Ramponi|first3=Federico A.|chapter=Non-convex scenario optimization with application to system identification|year=2015|pages=4023–4028|doi=10.1109/CDC.2015.7402845|isbn=978-1-4799-7886-1|s2cid=127406 }}</ref>
This involves measuring the number of support constraints, <math>S</math>, for the Interval Predictor Model after training and hence making predictions about the reliability of the model.
This enables non-convex IPMs to be created, such as a single layer neural network.
Line 37:
where the interval predictor model center line <math> \hat{y}_p(x) = (\overline{y}_p(x) + \underline{y}_p(x)) \times 1/2</math>, and the model width <math> h = (\overline{y}_p(x) - \underline{y}_p(x)) \times 1/2 </math>. This results in an IPM which makes predictions with homoscedastic uncertainty.
Sadeghi (2019) demonstrates that the non-convex scenario approach from Campi (2015) can be extended to train deeper neural networks which predict intervals with hetreoscedastic uncertainty on datasets with imprecision.<ref name="Sadeghi2019">{{cite journal|last1=Sadeghi|first1=Jonathan C.|last2=De Angelis|first2=Marco|last3=Patelli|first3=Edoardo|title=Efficient Training of Interval Neural Networks for Imprecise Training Data|year=2019|journal=Neural Networks|volume=118|pages=338–351|doi=10.1016/j.neunet.2019.07.005|pmid=31369950|s2cid=199383010 |url=https://strathprints.strath.ac.uk/71230/ }}</ref>
This is achieved by proposing generalizations to the max-error loss function given by
:<math>
Line 45:
== Applications ==
Initially, [[scenario optimization]] was applied to robust control problems.<ref name="CampiGaratti2009">{{cite journal|last1=Campi|first1=Marco C.|last2=Garatti|first2=Simone|last3=Prandini|first3=Maria|author3-link= Maria Prandini |title=The scenario approach for systems and control design|journal=Annual Reviews in Control|volume=33|issue=2|year=2009|pages=149–157|issn=
Crespo (2015) and (2021) applied Interval Predictor Models to the design of space radiation shielding <ref name="CrespoKenny2016a">{{cite book|last1=Crespo|first1=Luis G.|title=18th AIAA Non-Deterministic Approaches Conference|last2=Kenny|first2=Sean P.|last3=Giesy|first3=Daniel P.|last4=Norman|first4=Ryan B.|last5=Blattnig|first5=Steve|chapter=Application of Interval Predictor Models to Space Radiation Shielding|year=2016|doi=10.2514/6.2016-0431|isbn=978-1-62410-397-1|hdl=2060/20160007750|s2cid=124192684 }}</ref> and to system identification.<ref>{{cite journal |last1=Crespo |first1=Luis |last2=Kenny |first2=Sean |last3=Colbert |first3=Brendon |last4=Slagel |first4=Tanner |title=Interval Predictor Models for Robust System Identification |journal=IEEE CDC 2021 |date=December 2021}}</ref>
In Patelli (2017), Faes (2019), and Crespo (2018), Interval Predictor models were applied to the [[structural reliability]] analysis problem.<ref name="PatelliBroggi2017">{{cite book|last1=Patelli|first1=Edoardo|title=Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017)|last2=Broggi|first2=Matteo|last3=Tolo|first3=Silvia|last4=Sadeghi|first4=Jonathan|year=2017|pages=212–224|doi=10.7712/120217.5364.16982|chapter=Cossan Software: A Multidisciplinary and Collaborative Software for Uncertainty Quantification|isbn=978-618-82844-4-9}}</ref>
<ref name="CrespoKenny2018"/>
<ref name="FaesSadeghi2019">{{cite journal|last1=Faes|first1=Matthias|last2=Sadeghi|first2=Jonathan|last3=Broggi|first3=Matteo|last4=De Angelis|first4=Marco|last5=Patelli|first5=Edoardo|last6=Beer|first6=Michael|last7=Moens|first7=David|title=On the robust estimation of small failure probabilities for strong non-linear models|journal=ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering|volume=5|issue=4|year=2019|issn=2332-9017|doi=10.1115/1.4044044|s2cid=197472507 |url=https://lirias.kuleuven.be/handle/123456789/633621 }}</ref>
Brandt (2017) applies interval predictor models to fatigue damage estimation of offshore wind turbines jacket substructures.<ref name="BrandtBroggi2017">{{cite journal|last1=Brandt|first1=Sebastian|last2=Broggi|first2=Matteo|last3=Hafele|first3=Jan|last4=Guillermo Gebhardt|first4=Cristian|last5=Rolfes|first5=Raimund|last6=Beer|first6=Michael|title=Meta-models for fatigue damage estimation of offshore wind turbines jacket substructures|journal=Procedia Engineering|volume=199|year=2017|pages=1158–1163|issn=
Garatti (2019) proved that Chebyshev layers (i.e., the minimax layers around functions fitted by linear <math>\ell_\infty</math>-regression) belong to a particular class of Interval Predictor Models, for which the reliability is invariant with respect to the distribution of the data.<ref name="GarCamCar2019">{{cite journal|last1=Garatti|first1=S.|last2=Campi|first2=M.C.|last3=Carè|first3=A.|title=On a class of Interval Predictor Models with universal reliability|journal=Automatica|volume=110|year=2019|page=108542|issn=
|