Content deleted Content added
Erel Segal (talk | contribs) |
Citation bot (talk | contribs) Alter: template type, journal. Add: doi, volume, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_webform 577/1776 |
||
Line 1:
{{Short description|Linear programming for Combinatorial optimization}}
The '''configuration linear program''' ('''configuration-LP''') is a particular [[linear programming]] used for solving [[combinatorial optimization]] problems. It was introduced in the context of the [[cutting stock problem]].<ref>{{Cite journal|last=Eisemann|first=Kurt|date=1957-04-01|title=The Trim Problem|url=https://pubsonline.informs.org/doi/abs/10.1287/mnsc.3.3.279|journal=Management Science|volume=3|issue=3|pages=279–284|doi=10.1287/mnsc.3.3.279|issn=0025-1909}}</ref><ref name="Gilmore61">Gilmore P. C., R. E. Gomory (1961). ''[https://web.archive.org/web/20190219020906/http://pdfs.semanticscholar.org/1417/64b5e86dc6c2647dfce48098794c79d5a38b.pdf A linear programming approach to the cutting-stock problem]''. Operations Research 9: 849-859</ref> Later, it has been applied to [[bin packing]]<ref name=":1">{{Cite journal|last1=Karmarkar|first1=Narendra|last2=Karp|first2=Richard M.|date=1982-11-01|title=An efficient approximation scheme for the one-dimensional bin-packing problem|url=https://ieeexplore.ieee.org/abstract/document/4568405/?casa_token=9mn-Ej2IsAQAAAAA:F6ppNaGyr23r55exi3PezsKFWbcKOoTH-GOZ6JQre9FYdTZGAFxsnn6SnazQs7GYvm3KjuJx-yw|journal=23rd Annual Symposium on Foundations of Computer Science (SFCS 1982)|pages=312–320|doi=10.1109/SFCS.1982.61|s2cid=18583908}}</ref><ref>{{Cite journal|last1=Bansal|first1=Nikhil|last2=Caprara|first2=Alberto|last3=Sviridenko|first3=Maxim|date=2006-10-01|title=Improved approximation algorithms for multidimensional bin packing problems|url=https://ieeexplore.ieee.org/abstract/document/4031404?casa_token=1lyd-glredEAAAAA:wrrFIGkFxkirjYvEfDXcxnzz2U-wfCznKYsRUbEnUpNtDN0l7_BErBWVQ9LgWYzgDJ_JNupgUFU|journal=2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06)|pages=697–708|doi=10.1109/FOCS.2006.38|isbn=0-7695-2720-5|s2cid=7690347}}</ref> and [[Optimal job scheduling|job scheduling]].<ref name=":0">{{Cite journal|last1=Verschae|first1=José|last2=Wiese|first2=Andreas|date=2014-08-01|title=On the configuration-LP for scheduling on unrelated machines|url=https://doi.org/10.1007/s10951-013-0359-4|journal=Journal of Scheduling|language=en|volume=17|issue=4|pages=371–383|doi=10.1007/s10951-013-0359-4|s2cid=34229676|issn=1099-1425}}</ref><ref>{{cite
== In bin packing ==
Line 50:
== In bin covering ==
In the [[bin packing|bin covering problem]], there are ''n'' items with different sizes. The goal is to pack the items into a ''maximum'' number of bins, where each bin should contain ''at least'' ''B''. A natural configuration LP for this problem could be:<blockquote><math>\text{maximize}~~\mathbf{1}\cdot \mathbf{x}~~~\text{s.t.}~~ A \mathbf{x}\leq \mathbf{n}~~~\text{and}~~ \mathbf{x}\geq 0</math></blockquote>where '''''A''''' represents all configurations of items with sum ''at least'' ''B'' (one can take only the inclusion-minimal configurations). The problem with this LP is that, in the bin-covering problem, handling small items is problematic, since small items may be essential for the optimal solution. With small items allowed, the number of configurations may be too large even for the technique of Karmarkar and Karp. Csirik, Johnson and Kenyon<ref name=":24">{{Cite journal|
== In machine scheduling ==
|