Content deleted Content added
Added information |
Added example |
||
Line 28:
==Examples and sufficient conditions==
Every
The
More generally, for any real <math>a \geq b,</math> the map
<math display=block>\begin{alignat}{4}
S_{a,b} :\;&& \R &&\;\to \;& \R \\[0.3ex]
&& x &&\;\mapsto\;&
\begin{cases}
a x & \text{ if } x \leq 0 \\
b x & \text{ if } x \geq 0 \\
\end{cases} \\
\end{alignat}</math>
is a sublinear function on <math>X := \R</math> and moreover, if <math>f : \R \to \R</math> is any sublinear function then <math>f = S_{f(1), -f(-1)}.</math>
If <math>p</math> and <math>q</math> are sublinear functions on a real vector space <math>X</math> then so is the map <math>x \mapsto \max \{p(x), q(x)\}.</math> More generally, if <math>\mathcal{P}</math> is any non-empty collection of sublinear functionals on a real vector space <math>X</math> and if for all <math>x \in X,</math> <math>q(x) := \sup \{p(x) : p \in \mathcal{P}\},</math> then <math>q</math> is a sublinear functional on <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=177-221}}
▲The linear functional <math>x \mapsto -x</math> on <math>X = \R</math> is a sublinear functional that is not positive and is not a seminorm.{{sfn|Narici|Beckenstein|2011|pp=177-221}}
==Properties==
|