Content deleted Content added
Reworded, clarified, and added information |
m Reworded |
||
Line 49:
If <math>p : X \to \R</math> is a sublinear function on a vector space <math>X</math> then<ref group=proof>If <math>x \in X</math> and <math>r := 0</math> then nonnegative homogeneity implies that <math>p(0) = p(r x) = r p(x) = 0 p(x) = 0.</math> Consequently, <math>0 = p(0) = p(x + (-x)) \leq p(x) + p(-x),</math> which is only possible if <math>0 \leq \max \{p(x), p(- x)\}.</math> <math>\blacksquare</math></ref>{{sfn|Narici|Beckenstein|2011|pp=120-121}}
<math display=block>p(0) ~=~ 0 ~\leq~ p(x) + p(- x) \qquad \text{ for every } x \in X,</math>
<math display=block>0 ~\leq~ \max \{p(x), p(- x)\} \qquad \text{ for every } x \in X.</math>
Moreover, when <math>p : X \to \R</math> is a sublinear function on a real vector space then the map <math>q : X \to \R</math> defined by <math>q(x) := \max \{p(x), p(- x)\}</math> is a seminorm.{{sfn|Narici|Beckenstein|2011|pp=120-121}}
|