Strong CP problem: Difference between revisions

Content deleted Content added
m Changed "an" to "a".
Fix typo
Line 40:
==Proposed solutions==
 
The strong CP problem is solved automatically if one of the quarks is massless.<ref>{{cite journal|last1=Hook|first1=A.|date=2019-07-22|title=TASI Lectures on the Strong CP Problem and Axions|url=https://pos.sissa.it/333/004/pdf|journal=Proceedings of Science|volume=333|doi=10.22323/1.333.0004|arxiv=1812.02669|access-date=2021-12-02}}</ref> In that case one can perform a set of chiral transformations on all the massive quark field to get rid of their complex mass phases and then perform another chiral transformation on the massless quark field to eliminate the residual θ-term without also introducing a complex mass term for that field. This then gets rid of all CP violating terms in the theory. The problem with this solution is that all quark massesquarks are known to be massive from experimental matching with [[lattice QCD|lattice calculations]]. Even if one of the quarks was essentially massless to solve the problem, this would in itself just be another fine-tuning problem since there is nothing requiring a quark mass to take on such a small value.
 
The most popular solution to the problem is through the Peccei–Quinn mechanism.<ref>{{Cite book|author=Peccei, R. D. |year=2008 |chapter=The Strong CP Problem and Axions |title=Axions: Theory, Cosmology, and Experimental Searches |editor1-last=Kuster |editor1-first=M. |editor2-last=Raffelt |editor2-first=G. |editor3-last=Beltrán |editor3-first=B. |series=Lecture Notes in Physics |volume=741 |pages=3–17 |arxiv=hep-ph/0607268 |doi=10.1007/978-3-540-73518-2_1 |isbn=978-3-540-73517-5|s2cid=119482294 }}</ref> This introduces a new global [[anomaly (physics)|anomalous]] symmetry which is then [[spontaneous symmetry breaking|spontaneously broken]] at low energies, giving rise to a [[Goldstone boson|pseudo-Goldstone]] boson called an axion. The axion ground state dynamically forces the theory to be CP-symmetric by setting <math>\bar \theta = 0</math>. Axions are also considered viable candidates for [[dark matter]] and axion-like particles are also predicted by [[string theory]].