Rayleigh–Ritz method: Difference between revisions

Content deleted Content added
Using the normal matrix: added an example
Example: arithmetic corrections
Line 116:
with
:<math> \mathbf {U} = \begin{bmatrix}
0 & -1\\
1 & 0\\
0 & 0\\
Line 129:
\quad
\mathbf {V}_h = \begin{bmatrix}
- \sqrt{2}/2 & \sqrt{2}/2\\
- \sqrt{2} & -\sqrt{2}
\end{bmatrix}.
</math>
Thus we already obtain the singular values 2 and 1 from <math>\Sigma</math> and from <math>\mathbf {U}</math> the corresponding two left singular vectors <math>u</math> as <math>[0, 1, 0, 0, 0]^*</math> and <math>[-1, 0, 0, 0, 0]^*</math>, which span the column-space of the matrix <math>W</math>, explaining why the approximations are exact for the given <math>W</math>.
 
Finally, step 3 computes the matrix <math>V_h = \mathbf {V}_h W^*</math>
: <math>
\mathbf {V}_h = \begin{bmatrix}
- \sqrt{2}/2 & \sqrt{2}/2\\
- \sqrt{2} & -\sqrt{2}
\end{bmatrix}
\,
= \begin{bmatrix}
- \sqrt{2}/2 & \sqrt{2}/2 & 0 & 0\\
- \sqrt{2} & -\sqrt{2} & 0 & 0
\end{bmatrix} =
\begin{bmatrix}
0 & -1 & 0 & 0\\
-1 & 0 & 0 & 0
\end{bmatrix}
</math>
recovering from its rows the two right singular vectors <math>v</math> as <math>[0, -1, 0, 0]^*</math> and <math>[-1, 0, 0, 0]^*</math>.
We validate <math>Mv=\sigma u</math>
: <math>
\begin{bmatrix}
1 & 0 & 0 & 0\\
0 & 2 & 0 & 0\\
0 & 0 & 3 & 0\\
0 & 0 & 0 & 4\\
0 & 0 & 0 & 0
\end{bmatrix}
\,
\begin{bmatrix}0\\ 1\\ 0\\ 0\end{bmatrix}
= \, 2 \,
\begin{bmatrix}0\\ 1\\ 0\\ 0\\ 0\end{bmatrix}
</math>
and <math>M^* u=\sigma v</math>
: <math>
\begin{bmatrix}
1 & 0 & 0 & 0 & 0\\
0 & 2 & 0 & 0 & 0\\
0 & 0 & 3 & 0 & 0\\
0 & 0 & 0 & 4 & 0
\end{bmatrix}
\,
\begin{bmatrix}0\\ 1\\ 0\\ 0\\ 0\end{bmatrix}
= \, 2 \,
\begin{bmatrix}0\\ 1\\ 0\\ 0\end{bmatrix}.
</math>
 
== Derivation from calculus of variations ==