Rayleigh–Ritz method: Difference between revisions

Content deleted Content added
Example: arithmetic corrections
Line 52:
 
=== Using the normal matrix ===
The definition of the singular value <math>\sigma</math> and the corresponding left and right singular vectors is <math>M v=\sigma u</math> and <math>M^* u=\sigma v</math>. Having found one set (left of right) of singular vectors by applying naively the Rayleigh–Ritz method to the [[Hermitian matrix|Hermitian]] '''normal matrix''' <math> A = M^* M \in \mathbb{C}^{N \times N}</math> of sizeor <math>N</math>-by-<math>N M M^* \in \mathbb{C}^{M \times M}</math>, allowswhichever directlyone applyingis thesmaller Rayleigh–Ritzsize, methodone takingcould advantage ofdetermine the factother thatset forof aleft givenof <math>N</math>-by-<math>m</math>right singular matrixvectors <math>simply Wby \individing \mathbb{C}^{Nby \timesthe m}singular </math>values. withHowever, [[orthonormal]]the columnsdivision theis eigenvalueunstable problemor fails for thesmall <math>m</math>-by-<math>m</math>or matrixzero singular values.
 
An alternative approach, e.g., defining the normal matrix as <math> A = M^* M \in \mathbb{C}^{N \times N}</math> of size <math>N</math>-by-<math>N</math>, takes advantage of the fact that for a given <math>N</math>-by-<math>m</math> matrix <math> W \in \mathbb{C}^{N \times m} </math> with [[orthonormal]] columns the eigenvalue problem of the Rayleigh–Ritz method for the <math>m</math>-by-<math>m</math> matrix
:<math> W^* A W = W^* M^* M W = (M W)^* M W</math>
can be interpreted as a singular value problem for the <math>N</math>-by-<math>m</math> matrix <math>M W</math>. This interpretation allows simple calculation of both left and right approximate singular vectors as follows.
Line 60 ⟶ 62:
# Compute the matrices of the Ritz left <math>U = \mathbf {U}</math> and right <math>V_h = \mathbf {V}_h W^*</math> singular vectors
# Output approximations <math>U, \Sigma, V_h</math>, called the Ritz singular triplets, to selected singular values and the corresponding left and right singular vectors of the original matrix <math>M</math> representing an approximate [[Singular_value_decomposition#Truncated_SVD | Truncated singular value decomposition (SVD)]]
 
 
 
==== Example ====