Primitive recursive arithmetic: Difference between revisions

Content deleted Content added
added short description
Tags: Mobile edit Mobile app edit iOS app edit
m references into alphabetical order, and minor details
Line 1:
{{short description|Formalization of the natural numbers}}
 
'''Primitive recursive arithmetic''' ('''PRA''') is a [[Quantification (logic)|quantifier]]-free formalization of the [[natural numbers]]. It was first proposed by Norwegian mathematician [[Thoralf {{harvtxt|Skolem]]|1923}}, <ref>reprinted in translation in {{citationharvtxt|first=Thoralfvan Heijenoort|last=Skolem|authorlink=Thoralf1967}}</ref> Skolemas a formalization of his [[finitist]] conception of the [[foundations of mathematics|year=1923|title=Begründungfoundations derof elementarenarithmetic]], Arithmetikand durchit dieis rekurrierendewidely Denkweiseagreed ohnethat Anwendungall scheinbarerreasoning Veränderlichenof mitPRA unendlichemis Ausdehnungsbereich|trans-title=Thefinitist. foundationsMany also believe that all of elementaryfinitism arithmeticis establishedcaptured by meansPRA,{{sfn|Tait|1981}} ofbut theothers recursivebelieve modefinitism ofcan thoughtbe withoutextended theto useforms of apparentrecursion variablesbeyond rangingprimitive overrecursion, infiniteup domains|language=Germanto [[epsilon zero (mathematics)|url=https:&epsilon;<sub>0<//www.ucalgary.ca/rzach/files/rzach/skolem1923.pdfsub>]],{{sfn|journal=SkrifterKreisel|1960}} utgitwhich avis Videnskapsselskapetthe i[[proof-theoretic Kristianiaordinal]] of [[Peano arithmetic]]. I PRA's proof theoretic ordinal is ω<sup>ω</sup>, Matematisk-naturvidenskabeligwhere klasse|volume=6ω is the smallest [[transfinite number|pages=1–38}}transfinite ordinal]]. Reprinted inPRA translationis insometimes {{citationcalled '''[[Skolem arithmetic]]'''.
| last = van Heijenoort | first = Jean | author-link = Jean van Heijenoort
| ___location = Cambridge, Mass.
| mr = 0209111
| pages = 302–333
| publisher = Harvard University Press
| title = From Frege to Gödel. A source book in mathematical logic, 1879–1931
| year = 1967}}.</ref> as a formalization of his [[finitist]] conception of the [[foundations of mathematics|foundations of arithmetic]], and it is widely agreed that all reasoning of PRA is finitist. Many also believe that all of finitism is captured by PRA,<ref>{{citation|authorlink=William W. Tait|last=Tait|first= W.W.|year=1981|title=Finitism|journal=[[The Journal of Philosophy]]|volume=78|pages=524–546|doi=10.2307/2026089}}.</ref> but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to [[epsilon zero (mathematics)|&epsilon;<sub>0</sub>]],<ref>{{citation
| last = Kreisel | first = G. | author-link = Georg Kreisel
| contribution = Ordinal logics and the characterization of informal concepts of proof
| ___location = New York
| mr = 0124194
| pages = 289–299
| publisher = Cambridge University Press
| title = Proceedings of the International Congress of Mathematicians, 1958
| contribution-url = http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0289.0299.ocr.pdf
| year = 1960}}.</ref> which is the [[proof-theoretic ordinal]] of [[Peano arithmetic]]. PRA's proof theoretic ordinal is ω<sup>ω</sup>, where ω is the smallest [[transfinite number|transfinite ordinal]]. PRA is sometimes called '''Skolem arithmetic'''.
 
The language of PRA can express arithmetic propositions involving [[natural number]]s and any [[primitive recursive function]], including the operations of [[addition]], [[multiplication]], and [[exponentiation]]. PRA cannot explicitly quantify over the ___domain of natural numbers. PRA is often taken as the basic [[metamathematic]]al [[formal system]] for [[proof theory]], in particular for [[consistency proof]]s such as [[Gentzen's consistency proof]] of [[first-order arithmetic]].
Line 50 ⟶ 34:
 
== Logic-free calculus ==
It is possible to formalise PRA in such a way that it has no logical connectives at all—a sentence of PRA is just an equation between two terms. In this setting a term is a primitive recursive function of zero or more variables. In {{harvtxt|Curry|1941 [[Haskell Curry]]}} gave the first such system.<ref> The rule of induction in Curry's system was unusual. A later refinement was given by {{citationharvtxt|Goodstein|1954}}. The [[Rule of inference|rule]] of induction in Goodstein's system is:
| last = Curry | first = Haskell B. | author-link = Haskell Curry
| doi = 10.2307/2371522
| journal = [[American Journal of Mathematics]]
| mr = 0004207
| pages = 263–282
| title = A formalization of recursive arithmetic
| volume = 63
| year = 1941}}.</ref> The rule of induction in Curry's system was unusual. A later refinement was given by [[Reuben Goodstein]].<ref>{{citation
| last = Goodstein | first = R. L. | author-link = Reuben Goodstein
| journal = Mathematica Scandinavica
| mr = 0087614
| pages = 247–261
| title = Logic-free formalisations of recursive arithmetic
| volume = 2
| year = 1954}}.</ref> The [[Rule of inference|rule]] of induction in Goodstein's system is:
 
:<math>{F(0) = G(0) \quad F(S(x)) = H(x,F(x)) \quad G(S(x)) = H(x,G(x)) \over F(x) = G(x)}.</math>
Line 89 ⟶ 58:
== See also ==
* [[Elementary recursive arithmetic]]
* [[Finite-valued logic]]
* [[Heyting arithmetic]]
* [[Peano arithmetic]]
* [[Second-order arithmetic]]
* [[Primitive recursive function]]
* [[Finite-valuedRobinson logicarithmetic]]
* [[Second-order arithmetic]]
* [[Skolem arithmetic]]
 
==ReferencesNotes==
<references/>
 
==References==
 
*{{cite journal
|last= Curry
|first= Haskell B.
|author-link= Haskell Curry
|year= 1941
|title= A formalization of recursive arithmetic
|journal= [[American Journal of Mathematics]]
|mr= 0004207
|pages= 263–282
|volume= 63
|doi= 10.2307/2371522
}}
 
*{{cite journal
|last= Goodstein
|first= R. L.
|author-link= Reuben Goodstein
|year= 1954
|title= Logic-free formalisations of recursive arithmetic
|journal= Mathematica Scandinavica
|mr= 0087614
|pages= 247–261
|volume= 2
}}
 
*{{cite book
|last= van Heijenoort
|first= Jean
|author-link= Jean van Heijenoort
|year= 1967
|title= From Frege to Gödel. A source book in mathematical logic, 1879–1931
|___location= Cambridge, Mass.
|mr= 0209111
|pages= 302–333
|publisher= Harvard University Press
}}
 
*{{Cite conference
|last= Kreisel
|first= Georg
|author-link= Georg Kreisel
|year= 1960
|contribution= Ordinal logics and the characterization of informal concepts of proof
|contribution-url = http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0289.0299.ocr.pdf
|___location= New York
|mr= 0124194
|pages= 289–299
|publisher= Cambridge University Press
|title= Proceedings of the International Congress of Mathematicians, 1958
}}
 
*{{cite journal
|last= Skolem
|first= Thoralf
|authorlink= Thoralf Skolem
|year= 1923
|title= Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich
|trans-title= The foundations of elementary arithmetic established by means of the recursive mode of thought without the use of apparent variables ranging over infinite domains
|language= German
|url= https://www.ucalgary.ca/rzach/files/rzach/skolem1923.pdf
|journal= Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-naturvidenskabelig klasse
|volume= 6
|pages= 1–38
}}
 
*{{cite journal
|last= Tait
|first= W.W.
|authorlink= William W. Tait
|year= 1981
|title= Finitism
|journal= [[The Journal of Philosophy]]
|volume= 78
|pages= 524–546
|doi= 10.2307/2026089
}}
 
;Additional reading
*{{cite journal
*{{citation
| last = Rose | first = H. E.Feferman
|first= Solomon
| journal = Zeitschrift für Mathematische Logik und Grundlagen der Mathematik
|author-link= Solomon Feferman
| mr = 0140413
|year= 1993
| pages = 124–135
|title= What rests on what? The proof-theoretic analysis of mathematics
| title = On the consistency and undecidability of recursive arithmetic
|url=https://math.stanford.edu/~feferman/papers/whatrests.pdf
| volume = 7
|journal= [[Philosophy of Mathematics]]
| year = 1961}}.
|publisher= J. Czermak (ed.)
|pages= 1–147
}}
 
*{{cite journal
* [[Solomon Feferman|Feferman, S]] (1992) ''[https://math.stanford.edu/~feferman/papers/whatrests.pdf What rests on what? The proof-theoretic analysis of mathematics]''. Invited lecture, 15th int'l Wittgenstein symposium.
|last= Rose
|first= H. E.
|year= 1961
|title= On the consistency and undecidability of recursive arithmetic
|journal= Zeitschrift für Mathematische Logik und Grundlagen der Mathematik
|mr= 0140413
|pages= 124–135
|volume= 7
|doi= 10.1002/malq.19610070707
}}
 
[[Category:Constructivism (mathematics)]]