Content deleted Content added
added short description Tags: Mobile edit Mobile app edit iOS app edit |
m references into alphabetical order, and minor details |
||
Line 1:
{{short description|Formalization of the natural numbers}}
'''Primitive recursive arithmetic''' ('''PRA''') is a [[Quantification (logic)|quantifier]]-free formalization of the [[natural numbers]]. It was first proposed by Norwegian mathematician
The language of PRA can express arithmetic propositions involving [[natural number]]s and any [[primitive recursive function]], including the operations of [[addition]], [[multiplication]], and [[exponentiation]]. PRA cannot explicitly quantify over the ___domain of natural numbers. PRA is often taken as the basic [[metamathematic]]al [[formal system]] for [[proof theory]], in particular for [[consistency proof]]s such as [[Gentzen's consistency proof]] of [[first-order arithmetic]].
Line 50 ⟶ 34:
== Logic-free calculus ==
It is possible to formalise PRA in such a way that it has no logical connectives at all—a sentence of PRA is just an equation between two terms. In this setting a term is a primitive recursive function of zero or more variables.
:<math>{F(0) = G(0) \quad F(S(x)) = H(x,F(x)) \quad G(S(x)) = H(x,G(x)) \over F(x) = G(x)}.</math>
Line 89 ⟶ 58:
== See also ==
* [[Elementary recursive arithmetic]]
* [[Finite-valued logic]]
* [[Heyting arithmetic]]
* [[Peano arithmetic]]
* [[Primitive recursive function]]
* [[
* [[Second-order arithmetic]]
* [[Skolem arithmetic]]
==
<references/>
==References==
*{{cite journal
|last= Curry
|first= Haskell B.
|author-link= Haskell Curry
|year= 1941
|title= A formalization of recursive arithmetic
|journal= [[American Journal of Mathematics]]
|mr= 0004207
|pages= 263–282
|volume= 63
|doi= 10.2307/2371522
}}
*{{cite journal
|last= Goodstein
|first= R. L.
|author-link= Reuben Goodstein
|year= 1954
|title= Logic-free formalisations of recursive arithmetic
|journal= Mathematica Scandinavica
|mr= 0087614
|pages= 247–261
|volume= 2
}}
*{{cite book
|last= van Heijenoort
|first= Jean
|author-link= Jean van Heijenoort
|year= 1967
|title= From Frege to Gödel. A source book in mathematical logic, 1879–1931
|___location= Cambridge, Mass.
|mr= 0209111
|pages= 302–333
|publisher= Harvard University Press
}}
*{{Cite conference
|last= Kreisel
|first= Georg
|author-link= Georg Kreisel
|year= 1960
|contribution= Ordinal logics and the characterization of informal concepts of proof
|contribution-url = http://www.mathunion.org/ICM/ICM1958/Main/icm1958.0289.0299.ocr.pdf
|___location= New York
|mr= 0124194
|pages= 289–299
|publisher= Cambridge University Press
|title= Proceedings of the International Congress of Mathematicians, 1958
}}
*{{cite journal
|last= Skolem
|first= Thoralf
|authorlink= Thoralf Skolem
|year= 1923
|title= Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich
|trans-title= The foundations of elementary arithmetic established by means of the recursive mode of thought without the use of apparent variables ranging over infinite domains
|language= German
|url= https://www.ucalgary.ca/rzach/files/rzach/skolem1923.pdf
|journal= Skrifter utgit av Videnskapsselskapet i Kristiania. I, Matematisk-naturvidenskabelig klasse
|volume= 6
|pages= 1–38
}}
*{{cite journal
|last= Tait
|first= W.W.
|authorlink= William W. Tait
|year= 1981
|title= Finitism
|journal= [[The Journal of Philosophy]]
|volume= 78
|pages= 524–546
|doi= 10.2307/2026089
}}
;Additional reading
*{{cite journal
|first= Solomon
|author-link= Solomon Feferman
|year= 1993
|title= What rests on what? The proof-theoretic analysis of mathematics
|url=https://math.stanford.edu/~feferman/papers/whatrests.pdf
|journal= [[Philosophy of Mathematics]]
|publisher= J. Czermak (ed.)
|pages= 1–147
}}
*{{cite journal
|last= Rose
|first= H. E.
|year= 1961
|title= On the consistency and undecidability of recursive arithmetic
|journal= Zeitschrift für Mathematische Logik und Grundlagen der Mathematik
|mr= 0140413
|pages= 124–135
|volume= 7
|doi= 10.1002/malq.19610070707
}}
[[Category:Constructivism (mathematics)]]
|