Content deleted Content added
Presentation. Use of mathematical notation for matrix dimensions. Tags: Visual edit Disambiguation links added |
|||
Line 2:
{{redirect|Adjoint matrix|the transpose of cofactor|Adjugate matrix}}
In [[mathematics]], the '''conjugate transpose''',
For [[Real number|real]] matrices, the conjugate transpose is just the transpose, <math>\boldsymbol{A}^\mathrm{H} = \boldsymbol{A}^\mathsf{T}</math>.
Line 54:
== Motivation ==
The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by
:<math>a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
That is, denoting each ''complex'' number
Thus, an
==Properties of the conjugate transpose==
* <math>(\boldsymbol{A} + \boldsymbol{B})^\mathrm{H} = \boldsymbol{A}^\mathrm{H} + \boldsymbol{B}^\mathrm{H}</math> for any two matrices <math>\boldsymbol{A}</math> and <math>\boldsymbol{B}</math> of the same dimensions.
* <math>(z\boldsymbol{A})^\mathrm{H} = \overline{z} \boldsymbol{A}^\mathrm{H}</math> for any complex number <math>z</math> and any
* <math>(\boldsymbol{A}\boldsymbol{B})^\mathrm{H} = \boldsymbol{B}^\mathrm{H} \boldsymbol{A}^\mathrm{H}</math> for any
* <math>\left(\boldsymbol{A}^\mathrm{H}\right)^\mathrm{H} = \boldsymbol{A}</math> for any
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\det\left(\boldsymbol{A}^\mathrm{H}\right) = \overline{\det\left(\boldsymbol{A}\right)}</math> where <math>\operatorname{det}(A)</math> denotes the [[determinant]] of <math>\boldsymbol{A}</math> .
* If <math>\boldsymbol{A}</math> is a square matrix, then <math>\operatorname{tr}\left(\boldsymbol{A}^\mathrm{H}\right) = \overline{\operatorname{tr}(\boldsymbol{A})}</math> where <math>\operatorname{tr}(A)</math> denotes the [[trace (matrix)|trace]] of <math>\boldsymbol{A}</math>.
* <math>\boldsymbol{A}</math> is [[invertible matrix|invertible]] [[if and only if]] <math>\boldsymbol{A}^\mathrm{H}</math> is invertible, and in that case <math>\left(\boldsymbol{A}^\mathrm{H}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{H}}</math>.
* The [[eigenvalue]]s of <math>\boldsymbol{A}^\mathrm{H}</math> are the complex conjugates of the [[eigenvalue]]s of <math>\boldsymbol{A}</math>.
* <math>\left\langle \boldsymbol{A} x,y \right\rangle_m = \left\langle x, \boldsymbol{A}^\mathrm{H} y\right\rangle_n </math> for any
==Generalizations==
|