Content deleted Content added
→Dilution of precision {{anchor|gdop}}: Adding missing merge template |
|||
Line 276:
=== Special and general relativity ===
[[Special relativity]] (SR) and [[General Relativity]] (GR) are two separate and distinct theories behind the [[theory of relativity]]. SR and GR make different (opposite) predictions when it comes to the clocks on-board GPS satellites. Note the opposite signs (plus and minus) due to the different effects.
The effect of gravitational frequency shift on the GPS due to [[general relativity]] is that a clock closer to a massive object will be slower than a clock farther away. Applied to the GPS, the receivers are much closer to Earth than the satellites, causing the GPS clocks to be faster by a factor of 5×10<sup>−10</sup>, or about 45.9 μs/day. This gravitational frequency shift is noticeable.▼
SR ([[Special relativity]]) predicts that the frequency of the atomic clocks moving at GPS orbital speeds will tick more slowly than stationary ground clocks by a factor of <math>{v^{2}}/{2c^{2}}\approx 10 ^{-10}</math>, or result in a delay of about -7 μs/day, where the orbital velocity is v = 4 km/s, and c = the speed of light. The SR effect is to their constant movement and height relative to the Earth-centered, non-rotating approximately inertial [[special relativity#Reference frames, coordinates and the Lorentz transformation|reference frame]]. In short, the clocks on the satellites are slowed down by the velocity of the satellite. This [[time dilation]] effect has been measured and verified using the GPS.
When combining the time dilation and gravitational frequency shift, the discrepancy is about 38 microseconds per day, a difference of 4.465 parts in 10<sup>10</sup>.<ref>Rizos, Chris. [[University of New South Wales]]. [http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/312.htm GPS Satellite Signals] {{Webarchive|url=https://web.archive.org/web/20100612004027/http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap3/312.htm |date=2010-06-12}}. 1999.</ref> Without correction, errors of roughly 11.4 km/day would accumulate in the position.<ref>{{Cite book |last=Faraoni |first=Valerio |url=https://books.google.com/books?id=NuS9BAAAQBAJ |title=Special Relativity |publisher=Springer Science & Business Media |year=2013 |isbn=978-3-319-01107-3 |edition=illustrated |page=54}} [https://books.google.com/books?id=NuS9BAAAQBAJ&pg=PA54 Extract of page 54]</ref> This initial pseudorange error is corrected in the process of solving the [[GPS#Navigation equations|navigation equations]]. In addition, the elliptical, rather than perfectly circular, satellite orbits cause the time dilation and gravitational frequency shift effects to vary with time. This eccentricity effect causes the clock rate difference between a GPS satellite and a receiver to increase or decrease depending on the altitude of the satellite.▼
To compensate for the discrepancy, the frequency standard on board each satellite is given a rate offset prior to launch, making it run slightly slower than the desired frequency on Earth; specifically, at 10.22999999543 MHz instead of 10.23 MHz.<ref name="Nelson">[http://www.aticourses.com/global_positioning_system.htm The Global Positioning System by Robert A. Nelson Via Satellite] {{Webarchive|url=https://web.archive.org/web/20100718150217/http://www.aticourses.com/global_positioning_system.htm |date=2010-07-18 }}, November 1999</ref> Since the atomic clocks on board the GPS satellites are precisely tuned, it makes the system a practical engineering application of the scientific theory of relativity in a real-world environment.<ref>Pogge, Richard W.; [http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html "Real-World Relativity: The GPS Navigation System"]. Retrieved 25 January 2008.</ref> Placing atomic clocks on artificial satellites to test Einstein's general theory was proposed by [[Friedwardt Winterberg]] in 1955.<ref>{{Cite web |date=1956-08-10 |title=Astronautica Acta II, 25 (1956). |url=http://bourabai.kz/winter/satelliten.htm |access-date=2009-10-23}}</ref>▼
▲GR ([[General Relativity]]) has the opposite effect. The effect of gravitational frequency shift on the GPS due to [[general relativity]] is that a clock closer to a massive object will be slower than a clock farther away. Applied to the GPS, the receivers are much closer to Earth than the satellites, causing the GPS clocks in the satellites to be faster by a factor of 5×10<sup>−10</sup>, or about +45.9 μs/day. This gravitational frequency shift is
▲
{| class="wikitable"
|+ SR and GR combined
|-
! Theory !! Value !! Notes
|-
| SR (Special Relativity) || -7 μs/day || Clocks slowed in Satellites due to Velocity
|-
| GR (General Relativity) || +45.9 μs/day || Clocks sped up in Satellites due to lower Gravity
|-
| Total (Combined) || +38.9 μs/day || GR is larger effect than SR
|}
▲To compensate for the discrepancy, the frequency standard on board each satellite is given a rate offset prior to launch, making it run slightly slower than the desired frequency on Earth; specifically, at 10.22999999543 MHz instead of 10.23 MHz.<ref name="Nelson">[http://www.aticourses.com/global_positioning_system.htm The Global Positioning System by Robert A. Nelson Via Satellite] {{Webarchive|url=https://web.archive.org/web/20100718150217/http://www.aticourses.com/global_positioning_system.htm |date=2010-07-18 }}, November 1999</ref> Since the atomic clocks on board the GPS satellites are precisely tuned, it makes the system a practical engineering application of the scientific theory of relativity in a real-world environment.<ref>Pogge, Richard W.; [http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html "Real-World Relativity: The GPS Navigation System"]. Retrieved 25 January 2008.</ref> Placing atomic clocks on artificial satellites to test Einstein's general theory was proposed by [[Friedwardt Winterberg]] in 1955.<ref>{{Cite web |date=1956-08-10 |title=Astronautica Acta II, 25 (1956). |url=http://bourabai.kz/winter/satelliten.htm |access-date=2009-10-23}}</ref> The conclusion is that the GPS satellites must compensate for GR, the physics of [[black holes]] and extreme gravity.
=== Calculation of time dilation ===
|