Bioinformatics workflow management system: Difference between revisions

Content deleted Content added
References: Removed parent category of Category:Bioinformatics software
Tags: Mobile edit Mobile web edit Advanced mobile edit
Citation bot (talk | contribs)
Alter: title. Add: chapter. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox2 | #UCB_webform_linked 327/3179
Line 4:
A '''bioinformatics workflow management system''' is a specialized form of [[workflow management system]] designed specifically to compose and execute a series of computational or data manipulation steps, or a [[workflows|workflow]], that relate to [[bioinformatics]].
 
There are currently many different workflow systems. Some have been developed more generally as [[scientific workflow system]]s for use by scientists from many different disciplines like [[astronomy]] and [[earth science]]. All such systems are based on an abstract representation of how a computation proceeds in the form of a directed graph, where each node represents a task to be executed and edges represent either data flow or execution dependencies between different tasks. Each system typically provides a visual front-end, allowing the user to build and modify complex applications with little or no programming expertise.<ref>{{Cite journal | last1 = Oinn | first1 = T. | last2 = Greenwood | first2 = M. | last3 = Addis | first3 = M. | last4 = Alpdemir | first4 = M. N. | last5 = Ferris | first5 = J. | last6 = Glover | first6 = K. | last7 = Goble | first7 = C. | author-link7 = Carole Goble| last8 = Goderis | first8 = A. | last9 = Hull | first9 = D. | doi = 10.1002/cpe.993 | last10 = Marvin | first10 = D. | last11 = Li | first11 = P. | last12 = Lord | first12 = P. | last13 = Pocock | first13 = M. R. | last14 = Senger | first14 = M. | last15 = Stevens | first15 = R. | last16 = Wipat | first16 = A. | last17 = Wroe | first17 = C. | title = Taverna: Lessons in creating a workflow environment for the life sciences | journal = Concurrency and Computation: Practice and Experience | volume = 18 | issue = 10 | pages = 1067–1100 | year = 2006 | s2cid = 10219281 | url = https://eprints.soton.ac.uk/260908/1/taverna-ccpe-reviewed.pdf }}</ref><ref>{{Cite journal | last1 = Yu | first1 = J. | last2 = Buyya | first2 = R. | doi = 10.1145/1084805.1084814 | title = A taxonomy of scientific workflow systems for grid computing | journal = ACM SIGMOD Record | volume = 34 | issue = 3 | pages = 44 | year = 2005 | citeseerx = 10.1.1.63.3176 | s2cid = 538714 }}</ref><ref name="CIBEC 2008">{{Cite book | last1 = Curcin | first1 = V. | last2 = Ghanem | first2 = M. | title = 2008 Cairo International Biomedical Engineering Conference | chapter = Scientific workflow systems - can one size fit all? | doi = 10.1109/CIBEC.2008.4786077 | pages = 1–9 | year = 2008 | journal=2008 Cairo International Biomedical Engineering Conference| isbn = 978-1-4244-2694-2 | s2cid = 1885579 }}</ref>
 
==Examples==
Line 91:
| doi-access = free
}}</ref>
* [[VisTrails]]<ref>{{Cite book | doi = 10.1109/VISUAL.2005.1532788 | title = VisTrails: enabling interactive multiple-view visualizations| year = 2005 | journal=VIS 05. IEEE Visualization, 2005.| pages = 135–142| last1 = Bavoil| first1 = L.| last2 = Callahan| first2 = S.P.| last3 = Crossno| first3 = P.J.| last4 = Freire| first4 = J.| last5 = Scheidegger| first5 = C.E.| last6 = Silva| first6 = C.T.| last7 = Vo| first7 = H.T.| title = VIS 05. IEEE Visualization, 2005| chapter = VisTrails: Enabling Interactive Multiple-View Visualizations| isbn = 978-0-7803-9462-9}}</ref>
 
==Comparisons between workflow systems==