Content deleted Content added
Importing Wikidata short description: "Regression for more than two discrete outcomes" |
|||
Line 93:
:<math>
\begin{align}
\Pr(Y_i=1) &= \frac{e^{\boldsymbol\beta_1 \cdot \mathbf{X}_i}}{1 + \sum_{
\\
\Pr(Y_i=2) &= \frac{e^{\boldsymbol\beta_2 \cdot \mathbf{X}_i}}{1 + \sum_{
\cdots & \cdots \\
\Pr(Y_i=K-1) &= \frac{e^{\boldsymbol\beta_{K-1} \cdot \mathbf{X}_i}}{1 + \sum_{
\end{align}
</math>
where the the summation runs from <math>1</math> to <math>K</math>, but excluding the term with the index of the probability being computed, or generally:
<math>
\begin{align}
\Pr(Y_i=k) = \frac{e^{\boldsymbol\beta_{K-1} \cdot \mathbf{X}_i}}{1 + \sum_{j=1, j\neq k}^{K} e^{\boldsymbol\beta_j \cdot \mathbf{X}_i}}
\end{align}
</math>
|