Multinomial logistic regression: Difference between revisions

Content deleted Content added
Importing Wikidata short description: "Regression for more than two discrete outcomes"
CaeSoMa (talk | contribs)
Line 93:
:<math>
\begin{align}
\Pr(Y_i=1) &= \frac{e^{\boldsymbol\beta_1 \cdot \mathbf{X}_i}}{1 + \sum_{kj=1, j\neq 1}^{K-1} e^{\boldsymbol\beta_kbeta_j \cdot \mathbf{X}_i}} \\
\\
\Pr(Y_i=2) &= \frac{e^{\boldsymbol\beta_2 \cdot \mathbf{X}_i}}{1 + \sum_{kj=1,j\neq 2}^{K-1} e^{\boldsymbol\beta_kbeta_j \cdot \mathbf{X}_i}} \\
\cdots & \cdots \\
\Pr(Y_i=K-1) &= \frac{e^{\boldsymbol\beta_{K-1} \cdot \mathbf{X}_i}}{1 + \sum_{kj=1, j\neq K-1}^{K-1} e^{\boldsymbol\beta_kbeta_j \cdot \mathbf{X}_i}} \\
\end{align}
</math>
 
where the the summation runs from <math>1</math> to <math>K</math>, but excluding the term with the index of the probability being computed, or generally:
 
<math>
\begin{align}
\Pr(Y_i=k) = \frac{e^{\boldsymbol\beta_{K-1} \cdot \mathbf{X}_i}}{1 + \sum_{j=1, j\neq k}^{K} e^{\boldsymbol\beta_j \cdot \mathbf{X}_i}}
\end{align}
</math>