Content deleted Content added
→Proofs: more copyediting |
Citation bot (talk | contribs) Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 2105/3500 |
||
Line 15:
== Interpretations of definition ==
For a graph <math>G</math>, we have <math>t(F, G) = t(F, W_{G}) </math> and <math>t(F, \overline{G})=t(F, 1 - W_G)</math> for the [[Graphon#Analytic Formulation|associated graphon]] <math>W_G</math>, since graphon associated to the complement <math>\overline{G}</math> is <math>W_{\overline{G}}=1 - W_G</math>. Hence, this formula provides us with the very informal intuition to take a close enough approximation, whatever that means,<ref>{{Cite journal|last1=Borgs|first1=C.|last2=Chayes|first2=J. T.|last3=Lovász|first3=L.|authorlink3=László Lovász|last4=Sós|first4=V. T.|authorlink4=Vera T. Sós|last5=Vesztergombi|first5=K.|authorlink5=Katalin Vesztergombi|date=2008-12-20|title=Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing
In other words, if we think of edges and non-edges as [[Edge coloring|2-coloring of edges]] of complete graph on the same vertices, then at least <math>2^{-e(F)+1}</math> fraction of all possible copies of <math>F</math> are monochromatic. Note that in a [[Erdős–Rényi model|Erdős–Rényi random graph]] <math>G = G(n, p)</math> with each edge drawn with probability <math>p=1/2 </math>, each [[graph homomorphism]] from <math>F</math> to <math>G</math> have probability <math>2 \cdot 2^{-e(F)} = 2^ {-e(F) +1}</math>of being monochromatic. So, common graph <math>F</math> is a graph where it attains its minimum number of appearance as a monochromatic subgraph of graph <math>G</math> at the graph <math>G=G(n, p)</math> with <math>p=1/2</math>
|