Path integral formulation: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid, doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 177/255
Line 533:
:<math>\left\langle \frac{\delta F[\varphi]}{\delta \varphi} \right\rangle = -i \left\langle F[\varphi]\frac{\delta \mathcal{S}[\varphi]}{\delta\varphi} \right\rangle</math>
 
for any polynomially-bounded functional {{mvar|F}}. In the [[deWitt notation]] this looks like<ref>{{cite journal |url=http://www.scholarpedia.org/Path_integral |first=Jean |last=Zinn-Justin |date=2009 |title=Path integral |journal=Scholarpedia |volume=4 |issue=2 |doi=10.4249/scholarpedia.8674 |bibcode=2009SchpJ...4.8674Z |at=8674|doi-access=free }}</ref>
:<math>\left\langle F_{,i} \right\rangle = -i \left\langle F \mathcal{S}_{,i} \right\rangle.</math>
 
Line 709:
* {{cite book|last1=Grosche|first= Christian |last2=Steiner|first2= Frank |name-list-style=amp |year=1998 |title=Handbook of Feynman Path Integrals |series=Springer Tracts in Modern Physics 145 |publisher=Springer-Verlag |isbn=978-3-540-57135-3}}
* {{cite arXiv|last=Grosche |first=Christian |title=An Introduction into the Feynman Path Integral |year=1992 |eprint=hep-th/9302097}}
*{{cite book|last=Hall |first=Brian C. |year=2013 |title=Quantum Theory for Mathematicians|series=Graduate Texts in Mathematics|volume=267 |publisher=Springer|isbn=978-1-4614-7115-8|doi=10.1007/978-1-4614-7116-5|s2cid=117837329 }}
*{{cite book|last1=Inomata|first1= Akira|last2= Kuratsuji|first2= Hiroshi|last3= Gerry|first3= Christopher |title=Path Integrals and Coherent States of SU(2) and SU(1,1) |place=Singapore |publisher=World Scientific |year=1992 |isbn=978-981-02-0656-7}}
*{{cite book|editor-last1=Janke|editor-first1=W.|editor-last2=Pelster|editor-first2=Axel|title=Path Integrals--New Trends And Perspectives|year=2008|series=Proceedings Of The 9Th International Conference|publisher=World Scientific Publishing|isbn=978-981-283-726-4}}