Intercept method: Difference between revisions

Content deleted Content added
m References: clean up
Methodology: +fix: correct quadrant condition checks for arcTAN, +conditions for adjusting arcCos-computed values.
Line 33:
 
: <math>\begin{align}
\tan(Zn,) = \tan(Zn \pm 180) &= \frac{\sin(LHA)}{\sin(lat) \cdot \cos(LHA) - \cos(lat) \cdot \tan(dec)} \triangleq tanZ \\
Z &= arctan(tanZ) \text{ } \in [-90,+90] \\
Zn &= \begin{cases}
Z & \text{if }LHA >\in 180[0, \text{ North Latitude}90] \\
360-Z+180 & \text{if }LHA <\in 180[90, \text{ North Latitude} 270]\\
180-Z+360 & \text{if }LHA >\in 180[270,360] && \equiv \text{ Southmod Latitude360} \\
180+Z & \text{if }LHA < 180, \text{ South Latitude} \\
\end{cases} \\
\end{align}</math>
 
:The adjustment from Z to Zn (which is in <math>[0,360]</math>, and measured from North) has two reasons:
::(1)The angles in [0,360] with the same <math>\tan</math> is not unique (since <math>\tan (X) = tan (X \pm 180)</math>), but <math>\arctan</math> is defined only in <math>[-90,90]</math>.
::(2)The negative angle must be adjusted to positive angle.
::(2) The LHA, which is used for disambiguation, is measured from South, unlike the North Azimuth, Zn.
 
or, alternatively,
 
: <math>\begin{align}
\cos(\pm Zn) &= \frac{\sin(dec) - \sin(lat) \cdot \sin(Hc)}{\cos(lat) \cdot \cos(Hc)}</math> \triangleq cosZ \\
Z & = \arccos(cosZ) \text { } \in [0,180] \\
Zn &= \begin{cases}
180+Z & \text{if }LHA <\in [180, \text{ South Latitude}360] \\
-Z+360 & \text{if }LHA \in [0,180] \\
\end{cases} \\
\end{align}</math>
:The adjustment for disambiguating <math>\cos</math> values has similar reasons.
 
Where
Line 55 ⟶ 62:
:''Hc'' = Computed altitude
:''Zn'' = Computed azimuth (Zn=0 at North)
:''Z'' = preliminary result for Zn (in some nautical almanacalmanacs)<ref name="US_Army_Training_Movie_CelNavTraining_Movie_CelNav">{{cite web
| title = Celestial Navigation
| website = https://www.youtube.com/